The EAHP Board, elected for three-year terms, oversees the association’s activities. Comprising directors responsible for core functions, it meets regularly to implement strategic goals. Supported by EAHP staff, the Board controls finances, coordinates congress organization, and ensures compliance with statutes and codes of conduct.
The pharmaceutical approach to the processing of donor human milk in a human milk bank
European Statement
Production and Compounding
Author(s)
Susana Fraga, Cláudia Cunha, Susana Pissarra , Carla Sampaio, Diana Silva, Pedro Soares, Teresa Soares, Renata Barbosa
Why was it done?
Human milk banks (HMBs) must use rigorous quality assurance practices to protect infants and milk processing, and post-pasteurization procedures are important in maintaining high-quality breast milk and safeguarding its quality.
The compounding pharmacist has all the knowledge and experience needed to implement processing circuits based on good handling practices and sterile technique, combined with quality assurance procedures to ensure their safety.
What was done?
Pharmacy implementation of the Donor Human Milk (DHM) processing circuit (by pasteurization) and conditions.
How was it done?
Bibliographical research and critical analysis of the functioning of HMB worldwide, with multidisciplinary meetings to define the best and most secure quality practices.
Equipment choice, in accordance with recommendations and assessment of their technical requirements.
Adaptation of the informatic medical integrated system to the DHM prescription, processing, quality control and dispensing circuit.
Design of the DHM circuit based on good practices for the safe use of products of human origin and on a robust quality assurance plan.
What has been achieved?
A DHM circuit was put into practice, with pharmacist intervention in DHM processing, quality control, and batch release.
Procedures for aseptic handling, quality control with check points and risk analysis, packaging, and labelling of DHM were outlined.
Work instructions were also established for handling equipment (pasteuriser, bottle sealer, laminar flow chamber) as well as procedures for cleaning facilities and material/equipment, with training sessions for the professionals involved.
The multidisciplinary circuit was adapted to the organisational management of the Neonatal Intensive Care Unit (NICU), HMB, and Pharmaceutical Services, certified on 18 April 2023 according to ISO 9001:2015 recommendations.
Guidelines for the correct use of equipment in accordance with its recommendations and technical requirements were established.
What next?
Opening more HMB worldwide is an inevitability. Prevailing know how at the level of hospital pharmacies represent several advantages to these projects, based on experience and expertise in manipulating biological products and maintaining a controlled circuit based on safety and quality standards.
Development of a compact, disposable filter to reduce the discharge of pharmaceutical waste into the sewer
European Statement
Production and Compounding
Author(s)
Annemarie Aart van der – Beek van der, Mattijs Maris, Erwin Koetse, Alex Hol, Meilof Feiken
Why was it done?
Hospital Pharmacies and especially the laboratories produce wastewater containing medicine residue. When this wastewater is discharged into sewage it contributes to the load of pharmaceutical residue and ultimately to pollution of surface-, ground and drinking water. To reduce this load, waste can be collected and transported to a processing facility for incineration and deactivation or alternatively treated locally. Our goal was to develop a practically applicable method that could effectively reduce the pharmaceutical sewage load locally, at the source.
What was done?
We developed a practical, compact, disposable filtration system that can be used on-site to reduce the amount of pharmaceutical residue in wastewater of our pharmaceutical laboratory. We tested and optimized the composition of the filter to effectively collect organic substances from locally produced wastewater (influent). We monitored filter performance and durability by analysis of filtrates (effluent).
How was it done?
Laboratory wastewater was collected during one month to yield 10 L influent. Portions of influent were filtered through 9 different types of filter packing and the effluents collected for analysis.
The influent reference and effluent samples were analysed using an iontrap LC/MS screening method using diazepam-D5 as an internal standard. The signal abundance 12 most relevant substances was chosen to evaluate the level of reduction by filtration. Based on these analyses, the optimal filter packing was determined.
What has been achieved?
In the effluent of the best performing filter packing, the abundance of 9 substances was reduced by 91,5-99,9%. The abundance for the other 3 substances was below detection limit.
Substances removed more >99%: atorvastatine, carbamazepine, clarithromycine, diclofenac, granisetron, midazolam, naproxen, propranolol and rocuronium. Substances removed between 91-99%: cefazolin, ephedrine and ropivacaine.
What next?
The optimal filter composition will be tested in practice in a test setup. In addition, cost effectiveness and sustainability compared to alternative waste collection methods will be evaluated.
Development of bags ready to use for parenteral nutrition in the preterm patient
European Statement
Production and Compounding
Author(s)
Eleonora Castellana, Simonetta Felloni, Matilde Scaldaferri, Giuseppina Bonfante, Elena Maggiora, Francesco Cresi, Maria Francesca Campagnoli, Alessandra Coscia, Maria Rachele Chiappetta, Francesco Cattel
Why was it done?
The purpose was to provide the Neonatal-Intensive-Care-Unit (NICU) with ready-to-use bags that could improve patient safety by minimizing procedural incidents and maximize resource efficiency while providing clinically appropriate nutrition for the single PP.
What was done?
Seven standard bags (SSB), ready-to-use, have been formulated and developed for parenteral nutrition (PN) in preterm patients (PP). An assisted prescribing software was developed for selecting the most appropriate standard bags (SB).
How was it done?
The project was carried out in collaboration between pharmacists, nurses and neonatologist of NICU.
The composition of the SB was identified from the retrospective analysis of the types of individualized bags requested from the Pharmacy and from the analysis of the recommended ESPGHAN-Paediatric-Parenteral-Nutrition-2018 contributions.
What has been achieved?
SSB ready-to-use were identified:
The bags have been produced by an industrial partner according to Good Manufacturing Practice-Annex 1. The shelf life is 90 days.
The SSB were implemented successfully on the PP. Starting from 2021, approximately 250 bags/month have been used, with a reduction in individual preparations by the Pharmacy of approximately 80%.
This approach showed results in terms of clinical results and economic outcomes. The computer program guided the physician to the most appropriate standardized solution.
Early and timely administration of ready-to-use PN showed reduced weight loss and a shorter duration of PN than individualized bags (21 vs 25 days).
What next?
The project described has shown benefits including improved nutrient supply, fewer prescribing and administration errors, lower risk of infection, cost sav-ings, ready availability of the bags 24/7 and safe and effective supply of SB. This project will be strengthened in our hospital.
How we picked drugs for our automated preparation
European Statement
Production and Compounding
Author(s)
Teimori Kaveh, Lunnan Asbjørn , Komnenic Aleksandar, Gleditsch Espen, Duedahl Hende Camilla
Why was it done?
Oslo Hospital Pharmacy is working to standardize and automate 10% of Oslo University Hospital’s annual consumption of two million parenteral medication doses. They aim to provide 200,000 ready-to-administer doses to OUS, starting with a trial in 2025 and scaling up to 200,000 doses by 2028. This initiative addresses efficiency, reduces nurse workload, and minimizes medication errors, addressing healthcare workforce challenges and ensuring timely and accurate medication delivery at Oslo University Hospital.
What was done?
Drugs were selected for inclusion in implementation of automated preparation of ready-to-use syringes and bags.
How was it done?
Oslo Hospital Pharmacy is dedicated to providing market-competitive ready-to-administer medications through a flexible selection process. This process involved a thorough analysis of parenteral medication usage in five reference care units over eight months. We compared consumption in these units (69 beds) to the entire hospital (2,031 beds) to align with Oslo University Hospital’s needs. Collaborations with international partners in the Netherlands and Denmark confirmed shared priorities, especially in ready-to-administer antibiotics, validating their meticulous selection process. Oslo Hospital Pharmacy’s strategy underscores their commitment to addressing healthcare challenges effectively with global validation.
What has been achieved?
The following 12 medications were selected for the initiative: Piperacillin/tazobactam 4g, Ampicillin 2g, Vancomycin 1g, Vancomycin 0.5g, Cefotaxim 2g, Cloxacillin 2g, Cefazolin 2g, Propofol 10 mg/ml, Fentanyl 50 microg/ml, Ketamin 10 mg/ml, Benzylpenicillin 3g and Benzylpenicillin 1.2g.
Results showed that the reference care units consumed 14 ampoules or vials per bed, while Oslo University Hospital consumed 80, suggesting a representative and potentially even larger demand across the hospital.
What next?
The established drug selection procedure offers an organized method for incorporating new medications. This well-defined medication list facilitates the selection of the most appropriate automation system for implementation. Considering the prevalent staff and medication shortages on a global scale, many institutions are increasingly considering the adoption of automation in their drug preparation departments. We aspire that our method can offer valuable assistance in their pursuit.
Residual contamination during semi-automated compounding of paclitaxel and gemcitabine
European Statement
Production and Compounding
Author(s)
Schoening Tilman, May Cornelia , Hoppe-Tichy Torsten
Why was it done?
Results of the wipe tests should be used to adapt the existing cleaning protocols in a way that residual contamination with cytotoxic drugs on parts of the robot, gloves and infusions bags are either reduced or avoided.
What was done?
At Heidelberg University Hospital the semi-automated device “Smartcompounder Chemo” (Smartcompounders, Enschede, NL) has been operated since 2019. We conducted three sets of wipe tests at three consecutive dates to identify contamination on parts of the robot, bags and gloves for selected drugs happening during the preparation process depending upon changes in cleaning protocols.
How was it done?
Wipe tests had been provided by Institute for Energy- and Environment Technics (IUTA, Duisburg, Germany) and analysed according to the published standards. Before and after a preparation run of gemcitabine as well as paclitaxel there had been performed two wipe tests sets of potentially exposed surfaces: Gloves after loading and unloading of the device, robot head, syringe holder, vial adapters, bag adapters, infusion bags and vials. After evaluation of the results of the first wipe test set, we adapted cleaning agent and techniques and a second set was performed.
What has been achieved?
Both wipe test sets did not show any positive results for paclitaxel. For gemcitabine residual contamination was shown on gloves after loading and unloading, syringe holder and robot head before and after preparation run, vial adapter before and after preparation and bag adapter after preparation run. The second wipe test set after adaptation of cleaning procedures showed considerably smaller numbers of positive tests and smaller amounts of gemcitabine contamination as well.
What next?
Results demonstrate that contamination patterns associated with automated preparation of cytotoxic drugs are related to the design of the device and effective cleaning procedures of the robot parts and the vials can result in lower contamination values of surfaces. Therefor it is vital to analyze the effectiveness of cleaning protocols when working with these devices and to adapt them if necessary. We were also able to demonstrate, that the final container was not relevantly affected by residual contamination during automated preparation process of Smartcompounder Chemo meaning a positive impact on staff safety.
The development of hospital manufactured ready-to-use cefazolin 100 mg/mL injections
European Statement
Production and Compounding
Author(s)
Bojan Žagar, Matej Vehovc, Mateja Tršan, Blaž Vehar
Why was it done?
Cefazolin injection 100 mg/mL is a sterile pharmaceutical formulation comprising cefazolin sodium and water for injections. Traditionally, cefazolin injections were prepared on hospital wards by reconstituting cefazolin sodium powder for injections with water for injections and subsequent dilution before intravenous administration.
What was done?
Establish a semi-automatic aseptic preparation process, ensure the production of final products that meet quality standards, develop analytical methodologies for in-process and final product quality control, ensure the reliability and validity of test results, and conduct a stability study to confirm long-term storage.
How was it done?
Product materials include: Pharmacy Bulk Package of Cefazolin for Injection, USP, water for injections, Luer Lock 20 mL sterile polypropylene syringes, steribags. Product is prepared with aseptic technique within a laminar flow unit situated in a pharmaceutical cleanroom. Bulk package is connected to a dispensing device, followed by reconstitution with water for injections. In-process samples are collected and volume-adjusted based on density. Following the preparation and dispensing, syringes undergo labeling and packaging into steribags. They are then promptly stored at -30°C within 4 hours. Final product samples are obtained and analysed (pH value, cefazolin content, endotoxins, sterility) prior to product release.
What has been achieved?
Preparation of cefazolin sodium injections in a controlled, aseptic environment utilizing pre-prepared bags containing the appropriate cefazolin concentration (100 mg/mL) has successfully addressed critical concerns surrounding the safety, efficacy, and quality of these pharmaceuticals when administered on hospital wards. Challenges related to stability and shelf life are being addressed with the storage approach at -30°C within the pharmacy, followed by a carefully monitored transition to ward storage at 5°C for up to 28 days, and subsequent patient administration at room temperature within 2 days.
What next?
This approach not only streamlines the process but also safeguards the well-being of patients, marking a significant advancement in pharmaceutical preparation within our healthcare setting. We are conducting an ICH-compliant stability study with the objective of establishing a combined shelf life of 90 days at -30°C, followed by 28 days at 5°C, and an additional 2 days at room temperature.
The European Paediatric Formulary: a reinforced approach for improved monographs
European Statement
Production and Compounding
Author(s)
Théo Henriet, Jane Francomb, Dirk Leutner, Jörg Breitkreutz
Why was it done?
The PaedForm project was launched as a bibliographical exercise, with the aim of collecting age-appropriate formulations from existing formularies or from established sources in Europe and incorporating them into the PaedForm.
However, the data underpinning existing monographs were not as complete as expected and errors in the source data were observed. Adding an experimental verification step was therefore crucial to ensuring the reliability and the appropriate quality of the formulations described in PaedForm and demonstrating that the monographs could be used in practice.
What was done?
A decision to add an experimental verification to the elaboration process for monographs to be published in the European Paediatric Formulary (PaedForm) was recommended by the experts from the PaedF working party (PaedF WP) – assisted by the European Directorate for the Quality of Medicines & Healthcare (EDQM) – and supported by the European Committee on Pharmaceuticals and Pharmaceutical Care and the European Pharmacopoeia Commission.
This verification step involved checking the preparation against the description in the monograph and, where necessary, completing it. Samples prepared during this step were then tested to check that the quality control methods included in the monograph were suitable. The findings were used to determine whether the monograph could be completed.
Where necessary, this experimental verification would include tests such as the microbial challenge test as described in European Pharmacopoeia (Ph. Eur.) general chapter 5.1.3.
How was it done?
Experts from the PaedF WP support the need for practical verification and perform the experimental verification if needed. The EDQM supported this work by sourcing active substances and consumables and by organising analytical testing for techniques not available to the experts.
What has been achieved?
This approach enabled the enhancement of a furosemide oral formulation. The composition of this formulation as described in the source material did not meet the Ph. Eur. requirements for antimicrobial preservation, so it was changed to include a higher concentration of the preservative and comply with the Ph. Eur. requirements.
What next?
The PaedF WP will continue to expand PaedForm by elaborating new monographs covering unmet therapeutic needs. Users are invited to contribute to this process by commenting on texts published in the PaedForm Pharmeuropa public consultation platform.
The role of hospital pharmacists in gene therapy preparation
European Statement
Production and Compounding
Author(s)
Lucija Tominović Gjivić, Gabrijela Kos, Anita Šimić
Why was it done?
In order to ensure correct use of voretigene neparvovec and minimise the risks associated with its administration, the product can be distributed only through treatment centres where qualified staff (vitreoretinal surgeons and pharmacists) have participated in the mandatory risk management plan (RMP) education program required by EMA.
Since voretigene neparvovec has to be transported and stored frozen at ≤-65 ºC, has short shelf life after dilution (4 hours), contains genetically modified organisms and must be handled according to local biosafety guidelines, there was a need for establishing standard operating procedures (SOPs) for each step of the treatment process.
What was done?
The University Eye Clinic, University Hospital Sveti Duh in Zagreb, Croatia, was designated as the world’s 6th gene therapy centre in 2020.
Hospital pharmacists, as part of a multidisciplinary team, play an important role in preparation and administration of the gene therapy product voretigene neparvovec which is indicated for the treatment of patients with vision loss due to inherited retinal dystrophy caused by biallelic RPE65 (retinal pigment epithelium-specific 65 kilodalton protein) mutations.
How was it done?
The multidisciplinary team consists of a paediatric ophthalmologist, an inherited retinal disease specialist, retinal surgeons, pharmacists and nurses.
SOPs were created for: ordering process, storage of the product, coordination between members of the multidisciplinary team, preparation of the product, administration and disposal of waste.
Preparation of voretigene neparvovec is performed under aseptic conditions in a Class II vertical laminar flow biological safety cabinet (BSC) according to Pharmacy Manual which was ensured by the manufacturer.
What has been achieved?
Since 2020. there had been 47 dose applications of voretigene neparvovec (26 patients, Croatian and nonCroatian citizens).
The prevalence of inherited retinal dystrophy associated with biallelic RPE65 mutation is 1:200 000 and it is expected that there are 19 individuals (population of 3,8, million) with biallelic RPE65 mutation in Croatia, and 13 of them were detected since 2020.
There were no registered side effects which could be associated with errors during the preparation or administration of voretigene neparvovec.
What next?
With the increasing number of gene and cell-based therapies, the need for continuous education of hospital pharmacists and exchange their experiences is greater than ever.
Evaluation of tetracosactide peptide in galenic formulations for rapid adrenocorticotrophic hormone stimulation test
European Statement
Production and Compounding
Author(s)
Aleksandra Bračko, Janez Ilaš
Why was it done?
The rapid adrenocorticotrophic hormone (ACTH) stimulation test is a commonly performed test in all hospital departments of the University Medical Centre Maribor. The reason for its widespread use lies in its simple execution using a pre-filled syringe containing precisely 1 µg of tetracosactide solution. Until the year 2016, we prepared a 5 ml solution with a concentration of 5 µg/ml in glass vials. Based on a literature data we set a shelf life of three months from the date of production for the solution filled in plastic syringe. The solution in glass vials has a shelf life of four months. We wanted to confirm this shelf-life with several analytical methods.
What was done?
The aim of our work was the qualitative and quantitative evaluation of tetracosactide peptide in a solution with a concentration of 5 µg/ml, filled in glass and plastic containers and stored under different conditions, using multiple methods. We stored the sample solution of tetracosactide for five months under various conditions. We performed the analysis using the Qubit 4 fluorometer, the Bradford method and method based on ultra-high-performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC–HRMS).
How was it done?
The first two relatively simple methods, Qubit 4 fluorometer, the Bradford method, did not provide the desired results. We assume that these methods were not sensitive enough for our sample with a concentration of 5 µg/ml. In the end, we used the UHPLC-HRMS analysis, which proved to be sensitive and highly selective.
What has been achieved?
The peptide molecule has eight basic centers in its structure, so both tetracosactide and each impurity were differently charged in an acidic medium, specifically +3, +4, +5, +6, +7, and +8. The distribution of charge of tetracosactide and impurities among the samples is very similar, with the highest proportion represented by molecules with a charge of +6. We have identified 11 impurities. The highest proportion was represented by impurity with the increased mass of 16 Da (tetracosactide sulfoxide). HPLC-HRMS method is highly selective and allows identification of each impurity
What next?
Based on the findings we will validate a method for quantification of the selected impurities which will allow us to perform the stability study of according to the ICH guidelines.
A risk-based choice of syringes and associated equipment for compounding and intravitreal administration of drugs for wet age-related macular degeneration
European Statement
Production and Compounding
Author(s)
Espen Gleditsch, Dag Fossum
Why was it done?
There are no available syringes with CE approval for intravitreal administration. The CE approval for sterile single use syringes covers dosage and sterility, but not the special needs associated with intravitreal administration. The choice of syringe and associated equipment therefore have to be based on a risk assessment. The intravitreal administration includes increased patient risk regarding sterility (infection), particles (inflammation), injection volume (ocular pressure), silicone oil (floaters in the vision) and technical performance (leakage and compatibility with needle). The aim of this work was to find the syringes, associated equipment and compounding process that present least risk to the patients.
What was done?
Oslo hospital pharmacy delivers ready to use syringes for intravitreal administration of drugs for wet age-related macular degeneration. The pharmacy has in cooperation with the eye department at Oslo university hospital done a risk assessment in 2023 to decide syringes and associated equipment for compounding and administration.
How was it done?
The syringes historically used for intravitreal administration in Norway are Insulin syringes with prefixed needles (BD), Inject F syringes (BBraun) and Zero Residual syringes (SJJ Solutions). The needles used are TSK Low Dead Space needles and Zero Residual needles. The compounding methods are filling of the ready to use syringe from a bulk syringe by a needle or use of a Zero Residual bubble adaptor. All ready to use syringes are compounded in isolators with grade A in the working chamber, delivered with needle or cap, and packed in sterile bags. The risks associated with each syringe, needle and compounding process were assessed with a Failure Mode Effects Analysis Method.
What has been achieved?
The risk assessment shows that the risk to the patients are lowest when administering drugs for wet age-related macular degeneration with Zero Residual syringes and needles, filling the syringes with bubble adaptor and deliver with cap. This will give the lowest risk score regarding sterility, particles, injection volume, silicone oil and technical performance.
What next?
This work is relevant for other pharmacists and prescribing practitioners when assuring that syringes and associated equipment are of appropriate quality and suitable for intended use.