The EAHP Board, elected for three-year terms, oversees the association’s activities. Comprising directors responsible for core functions, it meets regularly to implement strategic goals. Supported by EAHP staff, the Board controls finances, coordinates congress organization, and ensures compliance with statutes and codes of conduct.
Parameters involved in medication dispensing automation security and performance
European Statement
Patient Safety and Quality Assurance
Author(s)
Hind Bouami, Dorine Castillo
Why was it done?
The human-machine system designer has to make decisions to secure and improve the automation process, and handle organization’s complexity. Documenting human agent’s situation awareness is crucial to support human-machine designers’ decision-making. Knowledge about risks, critical parameters and factors that can impact and threaten automation system’s performance and security are valuable for human agents, and should be collected using preventive and retrospective approaches.The evaluation of Macon hospital center’s automation performance enables to identify critical parameters to control in order to secure the human-machine system.
What was done?
An automation evaluation approach has been conducted in Macon hospital center, a hospital equipped with automated drug dispensing solutions for more than 5 years. The analysis of Macon hospital center automation’s feedback provides relevant information to enhance the perception and the comprehension of the system’s complexity fully, environmental factors that interact with the system, and to identify critical parameters in the automation process. Therefore, agents can design a projection of a secure and performant automated organization. This information will enable hospitals to make effective decisions to improve their automation project performance.
How was it done?
We deployed an anthropocentric approach for automated system evaluation in Macon hospital center.
Our approach integrates six steps that are run in automated hospital pharmacies to analyze their feedback [6]:
1) The identification of pharmacy’s automation needs and objectives, and the analysis of operational environment and existing equipment,
2) The analysis of automated equipment functional specifications formalized by the pharmacy,
3) The evaluation of automation deployment results and related gains,
4) The evaluation of specific actions implemented by the pharmacy during automation process,
5) The analysis of the parameters to control for automated equipment integration security and performance,
6) The analysis of factors influencing human-machine interaction.
What has been achieved?
The analysis of Macon hospital center pharmacy’s automation specifications revealed that 66.22% of automation requirements are technical, 29.73% concern human-machine interaction, and 4.05% relate to human aspects.
80.95% of automation specification related to the chosen Sinteco’s automated solution are met. The performance of the chosen automated solution is involved in 28.38% of automation specifications performance in Macon hospital center. The remaining systemic parameters involved in automation specifications performance need to be controlled.
Critical systemic parameters involved in automated solutions specifications and performance that have been identified through Macon hospital’s automation feedback are: the specificities of the chosen automated solution, hospital’s strategic decisions and budgetary constraints, the complexity of the hospital’s organization, the complexity of hospital’s information system, the constraints related to the packaging of drugs by pharmaceutical firms, users training, the complexity of the automated system, and users’ requirements and constraints.
The five parameters influencing human-machine interaction that should be managed to secure automated systems are: understanding the system’s complexity, defining relevant levels of automation, determining human and automated agents’ authority, determining human and automated agents’ autonomy, and understanding the human complexity.
What next?
Handling life-critical systems complexity such as medication delivery activity requires to be equipped with appropriate technology, and to control automation risks. The integration of human-machine principles is crucial to secure automation in hospitals, and to maintain a good balance between automation and human skills.