Development of a compact, disposable filter to reduce the discharge of pharmaceutical waste into the sewer
Pdf
European Statement
Production and Compounding
Author(s)
Annemarie Aart van der – Beek van der, Mattijs Maris, Erwin Koetse, Alex Hol, Meilof Feiken
Why was it done?
Hospital Pharmacies and especially the laboratories produce wastewater containing medicine residue. When this wastewater is discharged into sewage it contributes to the load of pharmaceutical residue and ultimately to pollution of surface-, ground and drinking water. To reduce this load, waste can be collected and transported to a processing facility for incineration and deactivation or alternatively treated locally. Our goal was to develop a practically applicable method that could effectively reduce the pharmaceutical sewage load locally, at the source.
What was done?
We developed a practical, compact, disposable filtration system that can be used on-site to reduce the amount of pharmaceutical residue in wastewater of our pharmaceutical laboratory. We tested and optimized the composition of the filter to effectively collect organic substances from locally produced wastewater (influent). We monitored filter performance and durability by analysis of filtrates (effluent).
How was it done?
Laboratory wastewater was collected during one month to yield 10 L influent. Portions of influent were filtered through 9 different types of filter packing and the effluents collected for analysis.
The influent reference and effluent samples were analysed using an iontrap LC/MS screening method using diazepam-D5 as an internal standard. The signal abundance 12 most relevant substances was chosen to evaluate the level of reduction by filtration. Based on these analyses, the optimal filter packing was determined.
What has been achieved?
In the effluent of the best performing filter packing, the abundance of 9 substances was reduced by 91,5-99,9%. The abundance for the other 3 substances was below detection limit.
Substances removed more >99%: atorvastatine, carbamazepine, clarithromycine, diclofenac, granisetron, midazolam, naproxen, propranolol and rocuronium. Substances removed between 91-99%: cefazolin, ephedrine and ropivacaine.
What next?
The optimal filter composition will be tested in practice in a test setup. In addition, cost effectiveness and sustainability compared to alternative waste collection methods will be evaluated.