ANALYTICAL CONTROL OF INJECTABLE PREPARATIONS: TAKE THE TIME TO ANALYZE YOUR ACTIVITY
European Statement
Production and Compounding
Author(s)
Guillaume BOUGUEON1,2 ; Mélissa WANG1 ; Jean-Marc Bernadou1, Maîté Sangnier 1, Aude BERRONEAU1
1 Pharmaceutical Technology Department, Bordeaux University Hospital, Avenue de Magellan, 33604 Pessac, France
2 ARNA Laboratoire ChemBioPharm U1212 INSERM – UMR 5320 CNRS, Université de Bordeaux, France
Why was it done?
We work within a university hospital, in an injectable drug production unit. We produce around 55,000 preparations a year, and ten years ago decided to implement analytical control (identification and dosing) (i.e. HPLC then followed by UV-Raman spectrophotometry (QCRX®)) as a post-process control method. To date, around one hundred assays are carried out daily (representing 50% of preparations produced), and some thirty different active substances are analyzed.
For the past 4 years, a monthly meeting has been devoted to monitoring the compliance of analytical assays for our preparations.
What was done?
We felt it was essential to take a step back from our control activity, to enable us to monitor and analyze assay compliance in detail, to distinguish between preparation errors and errors linked to control equipment, and to detect upstream any deviations in assay methods or material damage.
How was it done?
Monthly one-hour meetings have been set up. These multidisciplinary meetings are attended by 6 people, including senior and student pharmacists, pharmacy technician and a laboratory technician.
During these meetings, the following are presented: the number of assays and their nature (1st assay or 2nd assay following a 2nd sample); the number of non-compliant assays (outside the limit of +/- 15% of the target concentration), the overall compliance rate; an analysis of rejected and destroyed preparations, with an investigation into the causes of non-compliance.
Corrective action may then be taken: early maintenance of equipment, quarantine of analytical methods and research into the causes of drift, implementation of new dosing methods. Feedback is then given to the whole team.
What has been achieved?
These monthly meetings have enabled us to anticipate analytical drifts and reinforce our team’s compliance to this type of control. They also enable us to limit the downtime of dosing methods and the need for double visual checks, a potential source of errors.
What next?
The aim is to eventually increase the proportion of analytical control to over 50% of preparations produced. This will involve the introduction of new dosing methods for preparations usually controlled by double visual inspection, and the acquisition of additional equipment