STANDARDISATION OF DILUTED POTASSIUM INTRAVENOUS SOLUTIONS IN NEONATAL CARE UNITS (submitted in 2019)
Pdf
European Statement
Patient Safety and Quality Assurance
Author(s)
Luis Pérez de Amezaga Tomás, María Magdalena Parera Pascual, Mónica Sanz Muñoz, Catalina March Frontera, Gonzalo González Morcillo, Alejandra Mandilego Garcia, Álvaro Medina Guerrero, Ana Filgueira Posse, Montserrat Vilanova Boltó
Why was it done?
Administration of intravenous KCl produces hyperkalaemia and this can result in cardiac arrest and death. The Institute for Safe Medication Practices (ISMP) as well as other security agencies have recommended the withdrawal of KCl 2M from ward stock. This project was born as a response to these recommendations. We focused on a group of patients where these practices have not been extensively implemented. The aim of the protocol was to standardise the prescription, preparation, dispensation and administration of KCl to neonates in our hospital.
What was done?
Development of a protocol that standardises diluted potassium intravenous solutions for neonates (including those preterm over 28 weeks of gestation). This allowed us to remove concentrated potassium chloride (KCl) 2M from neonatal care units in our hospital. For this purpose, the hospital pharmacy centralised the preparation and distribution of KCl ready-to-use infusions.
How was it done?
The elaboration of the protocol took place as follows: • A multidisciplinary team designed KCl ready-to-use solutions that met the requirements of the newborn: – Glucose 10% 250mL with 5 mEq KCl (20mEq/L solution) – Glucose 10% 250mL with 10 mEq KCl (40mEq/L solution). • The hospital pharmacy centralised the preparation of these solutions. A risk assessment was performed and determined an expiration date of 7 days. • These solutions were stocked at all neonatal care units: Intensive Care Unit, Hospitalized Paediatric Unit and Paediatric Emergency Unit. • Weekly, the hospital pharmacy distributes these solutions and disposes of the expired ones. • Only ready-to-use KCl solutions were able to prescribe at the electronic prescription programme. • A formation plan was implemented to train all the professionals involved in neonatal care.
What has been achieved?
The protocol was implemented in November 2016. Since then, 65 patients have been treated with 20mEq/L solution and only 1 patient with 40mEq/L solution. No remarkable imbalances in electrolytes have been detected resulting from the standardisation of the fluid therapy with KCl. Only 3 incidents have been registered. All of them were prescription errors (solution selection); they reached the patient but without damage.
What next?
Nowadays, we are developing a stability study of the KCl solutions in order to assess the appropriateness of the expiration date.
IMPACT OF A MEDICATION REQUEST TOOL FROM THE NURSING ADMINISTRATION VIEW IN HOSPITALISATION (submitted in 2019)
Pdf
European Statement
Patient Safety and Quality Assurance
Author(s)
M. T. Barrera, O. Carrascosa, P. Madrid, A. Aguado, R. Martínez , N. Argüello, E. Cuellar, M. Vela, C. Jimenez, S. Payan, O. Sánchez
Why was it done?
Lack of stock delays medication administration by nurses. This situation also generates hospital warden displacements to Pharmacy Service and telephone interruptions of Pharmacy technicians’ work. The main aim was to amend stock lack management to improve patient security during medication preparation and administration. The secondary objectives were: reduce interruptions of other health professionals and automate warehouse exits, avoiding errors of manual updating of Pharmacy stock.
What was done?
This tool is part of “Safe Medication Administration in Hospitalization/Avoid Interruptions” project. A “button” was included in the nursing administration view of the electronic prescription programme, which when activated automatically generates a request to the Pharmacy Service for a dose of required medication. Hospital Information Systems were contacted for the design. All requests generated during the administration of medication were automatically received in Pharmacy Service. They were grouped by plant, listed, deducted from stock and dispensed at the agreed times.
How was it done?
The tool was developed by Hospital Information Systems, in collaboration with nursing, and staff training was carried out for correct handling of the tool. Also, medication dispensing schedules were agreed with the hospital warden. 15 days before tool implementation, the Pharmacy Service analysed all medication requests made from hospitalisation. Data collected were: plant and shift requested, reason, existence of pattern, requested medication, requested units, notice to auxiliaries to collect medication. After the first week of implementation, the same assessment of requests was made during the same period to compare and evaluate the impact of this tool implementation.
What has been achieved?
When both periods were compared, prescribed medication requests decreased from 198 to 15, this difference being statistically significant (Fisher’s exact test p=0.008). This difference meant significant reduction of interruptions in Pharmacy technicians’ daily work. Requests reasons were lack of dose in 43.4% (n=95) of cases, immediate prescriptions in 29.2% (n=64) of cases and treatment change in 20.5% (n=45) of cases. 29.2% of all requested medications belonged to the antimicrobial and antiviral group. 62% (n=135) of the total requests were received in the morning shift. Hospital warden displacements were significantly reduced when comparing both periods from 102 to 3 (Chi square test, p=0.006). This meant a significant reduction in interruptions in hospital warden work. It has been possible to standardise and improve efficiently nursing management of medication stock lack.
What next?
The incidents technical improvement is pending, as well as training of new nursing staff. It is possible to implement this tool in all hospital units that have electronic prescription.
PROCEDURE TO ENSURE CORRECT MEDICATION MANAGEMENT IN THE PERIOPERATIVE PROCESS (submitted in 2019)
Pdf
European Statement
Patient Safety and Quality Assurance
Author(s)
Noelia Vicente Oliveros, María Muñoz García, Álvaro Ruigomez Saiz, Montserrat Ferre Masferrer, Teresa Bermejo Vicedo, Eva Delgado Silveira, Lucía Quesada Muñoz, Ana María Alvarez-Diaz
Why was it done?
An analysis of the indicators of the perioperative process reflected the need to improve their quality. One of the causes of scheduled surgery cancellation was the lack of the follow up of the anaesthetist’s medication recommendations. Medications need to be carefully managed to prevent perioperative complications.
What was done?
We designed and implemented a flow chart to ensure the patient compliance of anesthetist’s medication recommendations prior to surgery. We designed a protocol for the perioperative medication management.
How was it done?
A multidisciplinary group was formed with the management of the hospital and representatives of all the services involved in the perioperative process. The group designed the flow chart of the process by consensus. Patients were candidates to enter in this process if they were on treatment with anticoagulant or 2 or more medications from the following groups: antiplatelet, antihypertensives, antidiabetics. A pharmacist called by phone three times (the day before, the day of medication change, and the day after) to the patient to ensure the compliance of anaesthetist recommendations. If there was a lack of compliance, the pharmacist contacted the surgeon who was in charge of deciding if the surgery procedure continued as scheduled. Moreover, the domiciliary medication of these patients were reconcilliated and recorded in their health record. Healthcare professionals could consult it during hospital stay. The group designed a protocol for the perioperative medication management with different medical specialists.
What has been achieved?
The project started in April 2019. The pharmacist called patients with scheduled surgery of lower limbs. A total of 31 patients benefited from the new flow chart. The pharmacist detected 38 medication errors; two involved errors concerning the suspension of anticoagulant drugs prior to surgery and four implied antihypertensive drugs. Once, it was necessary to contact the surgeon. In this case, the surgeon decided to continue with the surgery as schedule. Fifty-seven medications suffered a change in the period between the anaesthestic visit and the surgery, nine of them belonged to the monitored medication group.
What next?
The next steps are to spread the flow chart to other patients, to distribute the protocol among hospital healthcare professionals and to implement a procedure for the reintroduction of the modified medication.
SAFETY IMPROVEMENT IN PAEDIATRICS: ASSISTED PRESCRIPTION OF INTRAVENOUS MIXTURES (submitted in 2019)
Pdf
European Statement
Patient Safety and Quality Assurance
Author(s)
Iván Maray Mateos, Miguel Alaguero Calero, Adrián Rodriguez Ferreras, Cristina Calzón Blanco, Cristina Álvarez Asteinza, Lucía Velasco Roces, Ana Lozano Blazquez
Why was it done?
Intravenous drugs in the paediatric population bring up additional issues than the usual in adults. In their prescription, not only does the dose have to be adapted to the patient’s weight, the volume in which the drug is diluted must also be adapted to the reduced fluids requirement without jeopardising the stability of the mixture. In view of these facts, IV drug prescription in paediatrics implies a higher risk of medication errors. This new prescribing system simplifies prescription and reduces risks.
What was done?
Development of an assisted prescription system of intravenous mixtures adapted to paediatric patients in which both the drug dose and the diluent volume are automatically calculated according to the patient’s weight.
How was it done?
A literature review of drug dosing in paediatrics and their stability in different diluents was performed. For every drug the following parameters were considered: maximum dose in children (mg/kg), maximum concentration allowed (mg/ml), common doses and volumes in adults. Using these values, a system was built which calculated drug dose and diluent volume according to the patient’s weight and the maximum concentration allowed for stability reasons. For safety and to ease the preparation, the diluent volume in millilitres was rounded up to the next 10. In order to avoid overdosing overweight or older paediatric patients, maximum dose and diluent volume were narrowed down to the usual quantities in adults. Ultimately, this system was integrated in the electronic prescription system. A protocol was created, named “drug name” IV mixture PEDIATRICS. So, by selecting this protocol in a specific patient, the target dose and the diluent volume are automatically calculated.
What has been achieved?
This system was implemented for 38 drugs. From July 2018 to April 2019, 910 IV mixtures have been prescribed from the following Anatomical Therapeutic Chemical (ATC) groups: A02 Drugs for acid related disorders (39), J01 Antibacterials for systemic use (287), J02 Antimycotics for systemic use (3), J05 Antivirals for systemic use (8), A04 Antiemetics and antinauseants (175), N02 Analgesics (395), N03 Antiepileptics (3).
What next?
This method could be implemented in other electronic prescription programmes. The system must be updated by the Pharmacy Department, introducing new drugs and constantly reviewing stability databases, posology regimens, and information regarding dilution of parenteral drugs.
A QUALITY IMPROVEMENT PROJECT ON HEPARIN INFUSION SAFETY IN AN ACUTE TEACHING HOSPITAL (submitted in 2019)
Pdf
European Statement
Patient Safety and Quality Assurance
Author(s)
Anthony Hackett, Alice Oborne, Emma Ritchie, Caroline Broadbent, Rebecca Chanda, Karen Breen
Why was it done?
Anticoagulants such as UFH are recognised as high risk drugs. UFH requires frequent monitoring of the activated partial thromboplastic time ratio (APTTr), ensuring therapeutic anticoagulation and minimising adverse effects. UFH infusions and the APTTr were recorded using a paper based system. Incident reporting identified by the paper system resulted in inappropriate monitoring and management of UFH infusions, and dose omissions which could have resulted in harm.
What was done?
A Trust-wide electronic prescribing and medicines administration (EPMA) system was implemented in 2015. Complex infusions, e.g. unfractionated heparin (UFH) infusions, remained on paper due to EPMA functionality limitations. The complex infusion function was added into later EPMA upgrades. A multidisciplinary team (MDT) involving nursing, medical and pharmacy staff working within anticoagulation, EPMA and medication safety sought to design UFH infusions in EPMA.
How was it done?
Baseline audit (Paper-March 2016): Patients prescribed UFH infusions (n=14) were identified using SharePoint (e-reporting) by searching for the UFH infusion placeholder. Performance was measured against eight audit standards.
Re-audit (EPMA-March 2019): Patients prescribed UFH infusions (n=26) were identified using SharePoint by searching for those prescribed a UFH infusion on EPMA. Performance was measured against the same eight audit standards.
Chi square applied to results to test for statistical significance.
Incident rate per prescription: The Datix system was searched to identify heparin incidents reported during the data collection periods.
What has been achieved?
Audit standard 2016 audit v 2019 audit
1-Baseline APTTr checked before starting infusion 93% v 100%, p=0.1
2-Received correct loading dose of heparin based on APTTr 79% v 96%, p=0.07
3-APTTr checked 6 hours after infusion started 72% v 100%, p<0.05
4-APTTr checked 6 hours after infusion titrations 86% v 96%, p=0.2
5-APTTr in target range within 24 hours 50% v 70%, p=0.2
6-APTTr checked 24 hourly after 2 consecutive APTTr’s in range 100% v 100%=no change
7-Patient receives a medical review 24 hrly 65% v 100%, p<0.05
8-Heparin syringe and giving set changed 24 hrly 65% v 100%, p<0.05
UFH related incidents reduced from one incident per 1.6 infusions, to one incident per 6.5 infusions following the implementation of an EPMA system.
UFH incidents as a proportion of all anticoagulant incidents reduced from 43% (March-2016) to 20% (March-2019).
What next?
Electronic solution’s for high-risk, complex infusions such as heparin prescribing and monitoring improved care, quality and safety. Further high-risk infusions such as insulin are being developed
MANAGING MEDICINES SHORTAGES ON A NATIONAL LEVEL – A MULTIDISCIPLINARY COLLABORATION BETWEEN WHOLESALER, HOSPITAL PHARMACIES AND PATIENT SAFETY ORGANISATION IN DENMARK (submitted in 2019)
European Statement
Selection, Procurement and Distribution
Author(s)
Christine Dinsen-Andersen, Hanne Fischer, Anita Gorm Pedersen, Dagmar Bertelsen, Marianne Hald Clemmensen
Why was it done?
Before the NTF was established, each hospital pharmacy made their own assessments and solutions to CMS. This led to a lack of coordination in the national supply and knowledge sharing. As the number of CMS increased, a need for a coordinated national initiative became evident. The aim of the NTF is to secure better communication to healthcare professionals and to establish clearly defined rolls and responsibility in the supply chain from wholesaler to hospital pharmacy. Patient safety aspects should be included in all relevant steps of the process.
What was done?
A National Task Force (NTF) for critical medicines shortages (CMS) have been established with the main objective to provide therapeutic and patient safety assessment of CMS on a national level. In addition to this the NTF takes considerations regarding the supply chain into account in the assessments.
How was it done?
To secure national engagement, members of the task force were appointed according to a consensus between the hospital pharmacies in Denmark. The NTF includes participants from 3 hospital pharmacies, the national wholesaler for hospital pharmacies and a patient safety organization. Based on challenges of geographical dispersion and different local practices, an effort was put into: • securing a systematic work flow, for the group; • creating a digital platform with access for members from different organizations; • agreeing on when a medicine shortage is critical.
What has been achieved?
• Early intervention – resulting in opportune solutions. • Agility in allocation of remaining stock between hospital pharmacies. • Optimisation of choice of alternative treatment during period of shortage. • Secure supply of alternative drugs on national level. • Initiate agreement between physicians on choice of alternative on a national level. • Attention to patient safety challenges – preventing adverse events.
What next?
Joined forces have resulted in coordinated and optimised solutions to managing CMS, enabling the hospital pharmacies to secure patient safety. Hence the NTF shall continue its work. Having a national unit as NTF provides the basis for coordinated initiatives and for corporation with health and medicines authorities and market authorization holders.
SAFE PRESCRIBING METRICS FOR HOSPITAL PHARMACY (submitted in 2019)
European Statement
Patient Safety and Quality Assurance
Author(s)
Oran Quinn, Anna Marzec
Why was it done?
Errors of miscalculation, doses inappropriate for renal function and at extremes of weight were reported when doses of medication were written as ‘mg/kg’ without stating the dose to be given e.g. Gentamicin 5mg/kg, Vancomycin 15mg/kg and Enoxaparin 1.5mg/kg.
What was done?
A quality improvement initiative to resolve issues with prescribing medications dosed by weight. Nursing staff were identified as ‘gate-keepers’ who could refuse to administer medication inappropriately prescribed. Identification, agreement, education and feedback were necessary to change prescribing practice and support nursing staff. Hospital doctors were required to calculate and prescribe the total dose to be given. Feedback was given by monthly bulletin.
How was it done?
Support from key stakeholders was sought to endorse the initiative. Verbal and written education was given to nursing, medical and pharmacy staff to implement the initiative on an agreed date. Refusal to administer medication unsafely prescribed was key to successful implementation. Patient’s weight was not always available and additional equipment was provided to overcome this problem. The risk of withholding treatment was considered and an escalating referral process was recommended contacting the Senior House Officer, then Registrar and ultimately the patients Consultant to avoid lengthy delays to patient treatment. Nurses felt supported in refusing to administer medication.
What has been achieved?
A point prevalence study of all inpatients was carried out monthly to ascertain the level of compliance Mar-19 Apr-19 May-19 Jun-19 Jul-19 Aug-19 % of patients with total dose prescribed correctly 67.0 86.7 96.7 100.0 100.0 88.9 87.5. Results showed overall improvement from March to August and full compliance in May and June. Success was achieved through a multidisciplinary approach involving all key stakeholders, a forcing function and support from and for front line staff.
What next?
This initiative has been further developed to become ‘Monthly Safe Prescribing Metrics’.
Other prescribing metrics such as using ‘iu’ dosing for Insulin, prescribing appropriately for patients at extremes of weight and using the abbreviation ‘mcg’ for medications dosed in ‘micrograms’ were included. Initiatives to improve all metrics are ongoing.
Safe prescribing metrics could help to positively influence prescribing culture in other healthcare settings.
HERA – A NEW TOOL FOR THE QUALITATIVE AND PHARMACOECONOMICAL EVALUATION OF GENERIC DRUG PRODUCTS BEFORE CHANGING BRANDS (submitted in 2019)
Pdf
European Statement
Selection, Procurement and Distribution
Author(s)
Steffen Amann, Rudolf Bernard, Georg Berndt , Meike Bindemann, Myga Brakebusch, Jörg Brüggmann, Frank Dörje, Miriam Gyalrong-Steur, Anita Kellermann, Markus Müller, Elfriede Nusser-Rothermundt, Rainer Riedel, Eva Tydecks
Why was it done?
Given rising cost-pressure and increasing numbers of supply shortages, changes between generics have become daily practice in hospital pharmacies. To ensure constant treatment quality and patient safety, the equivalence of a potential new product with the current one must be guaranteed before changing brands. So far there has been no transparent, standardised tool for the comparison of generics workable in everyday clinical practice. Developing such a tool was our project’s aim.
What was done?
We developed an Excel-based tool for the qualitative and pharmacoeconomical evaluation of generics before changing brands (aut-idem substitution) in hospitals.
How was it done?
A working-group of pharmacists from seven hospitals developed the “HERA” tool (HTA-evaluation of geneReric phArmaceuticals). Starting from a base version, 22 generic products were assessed with the tool during five evaluation rounds. Based on these results the instrument was gradually refined. Within HERA‘s Excel matrix a potentially to-be-used generic is compared with the current one. The economic evaluation is based on unit prices and prescription volumes, but also includes process costs associated with the product change. The assessment of pharmaceutical quality is based on 34 criteria from six areas (licensed uses, drug substance, dosage form and excipients, handling, safe design, packaging and storage). The objective quality evaluation is complemented by the assessment of hospital-specific features. Complex substitutions – e.g. associated with a handling change – require involvement of the medical staff using the product. The purchasing decision is taken based on the synopsis of pharmaceutical quality and economic evaluation.
What has been achieved?
The standardised evaluation of product differences before substitutions allows for the early identification of potential problems of brand changes and helps avoiding them for the benefit of patient safety. HERA also guarantees reproducibility and transparent, QM-compliant documentation of product changes. The pharmacies of our purchasing group now routinely use HERA for the assessment of generics before intended brand substitutions. Each evaluation is conducted in one pharmacy and shared with the others via data-cloud.
What next?
We have published a paper on HERA and presented it at the German Hospital Pharmacists congress in 2018. Our aim is to create a network of colleagues with shared access to all colleagues’ HERA product evaluations to reduce the workload for the individual pharmacies.
IMPLEMENTATION OF A MEDICATION SAFETY AGENDA AT TWO HOSPITAL SITES IN RESPONSE TO WORLD HEALTH ORGANISATION (WHO) PATIENT SAFETY CHALLENGE ‘MEDICATION WITHOUT HARM’ (submitted in 2019)
Pdf
European Statement
Patient Safety and Quality Assurance
Author(s)
Meenal Patel, Sheena Patel, Peta Longstaff
Why was it done?
• Initiative introduced and on-going since 2017
• To increase and embed medication safety awareness
• To address under-reporting of medication-related incidents, with feedback
• To embed medication safety in education programmes and clinical practice
What was done?
A local medication safety agenda implemented across two hospital sites in response to World Health Organisation (WHO) patient safety challenge ‘Medication without Harm’.
How was it done?
• Medication safety group (MSG) introduced with local strategy, involving junior medical staff for frontline feedback • Medication safety metrics changed to allow benchmarking with peers as per NHS Improvement’s Model Hospital data • ‘Plan, Do, Study, Act’ model applied to improve transfer of care from hospital to rehabilitation unit following external incidents • Monthly analysis of incidents with harm, exploring reasons for under-reporting • Optimisation of incident reporting system to improve staff feedback following investigations • Near miss error log introduced in pharmacy with shared learning • Mitigation of medication-related risks e.g. medications safe storage action plan • Medication safety bulletins, patient safety newsletters and top tips guide introduced covering focal themes • ‘Safe prescribing’ mandatory induction training for junior doctors to support prescribing of high risk medicines and compliance to patient safety alerts • Hospital-wide education on lessons learnt from incidents • Medication safety resources for staff to access • Nursing quality round on medication safety • Electronic missed doses realtime report developed to tackle omitted/delayed critical medication doses • Medication safety awareness (MSA) week held to increase awareness on focal themes
What has been achieved?
• Multidisciplinary MSG with assurance on meeting WHO global challenge. • Monthly analysis of medication safety data to allow learning, collaboration and benchmarking against peers. • Positive staff feedback on bulletins/newsletters with staff involvement/engagement. • Training programmes embedded with safe prescribing education. • Improved hospital safety metrics: Following MSA week, a 5% and 21% increase in medication-related incident reporting occurred at each site which has been sustained. Reporting rates doubled at one site following success of MSA week. • In 2018-19, local target achieved for reported medication-related incidents per 100,000 finished consultant episodes and medication-related incidents with harm
What next?
• Collaborative multidisciplinary working raising the profile of pharmacists acting as medication safety officers
• Implementing medication safety measures from NHS Patient Safety Strategy 2019
• Initiatives for safer culture, safer systems and safer patients
THE IMPACT OF AN ELECTRONIC ALERT IN PREVENTING DUPLICATE ANTICOAGULANT PRESCRIBING (submitted in 2019)
European Statement
Patient Safety and Quality Assurance
Author(s)
Alison Brown, Gillian Cavell, Nikita Dogra, Cate Whittlesea
Why was it done?
Anticoagulants are high-risk drugs. An NHS England Patient Safety Alert was published in 2015 highlighting harm from inappropriate co-prescription of anticoagulants1.
What was done?
A ‘duplicate anticoagulant alert’ (Anticoagulant MLM) was implemented within our electronic prescribing system (EPMA) to alert prescribers if co-prescription of two or more anticoagulants was attempted, with the intention of preventing the completion of a potentially harmful prescription. We conducted a retrospective review of the impact of the Anticoagulant MLM on preventing co-prescription of low-molecular weight heparin (LMWH) and direct oral anticoagulants (DOACS)
How was it done?
The study took place in a 950 bed UK acute teaching hospital. A report of all Anticoagulant MLM alerts generated for adult inpatients between 26th June 2017 and 8th October 2018 was extracted from EPMA. Data on drugs prescribed, alert acceptance or override and duplicate anticoagulant administration were collected. Where alerts were overridden, appropriateness of the override was assessed by an anticoagulation specialist pharmacist. Ethics approval was not needed.
What has been achieved?
The Anticoagulant MLM triggered on 894 occasions; 113 in response to attempted prescription of a LMWH for a patient already prescribed a DOAC. 65 of 113 alerts were overridden (duplicate prescription completed). 48 alerts were accepted (duplicate prescription avoided). Of the 65 overridden alerts, consecutive doses of both anticoagulants were scheduled appropriately. No duplicate doses were administered in 44 cases (44/65, 67.7%). 15 duplicate prescriptions were either cancelled before administration or not administered concurrently (15/65, 23.1%). Duplicate doses were administered against 6 prescriptions (6/65, 9.2%), on 3 occasions. No patient harm was identified. The alert prevented inappropriate co-prescription of anticoagulants to 48 patients. Overrides were justified in 44 cases. Anticoagulants were correctly prescribed for 92/113 (81.4%) patients. It was outside the scope of this project to investigate why alerts were overridden. ‘Alert fatigue’2 and alert frequency3 are recognised factors limiting the effectiveness of electronic alerts in changing a planned course of action.
What next?
The alert remains in place as a barrier to error. Further work is needed to identify reasons for anticoagulant alert overrides.