Skip to content

OPTIMIZATION OF THE ADMINISTRATION METHOD FOR LUTETIUM (177Lu) OXODOTREOTIDE IN THE TREATMENT OF NEUROENDOCRINE TUMORS

Pdf

PDF Icon

European Statement

Patient Safety and Quality Assurance

Author(s)

Luísa Álvares
Sara Brandão Madureira
Diana Monteiro
Patrocínia Rocha

Why was it done?

Lutetium (177Lu) oxodotreotide is indicated for treating subtype 2 somatostatin receptor-positive (SSTR2) gastroenteropancreatic neuroendocrine tumors, well-differentiated G1 and G2, progressive, inoperable or metastatic. This radiopharmaceutical targets cells with SSTR2 overexpression, emitting radiation that causes cell death.
Initially, the Summary of Product Characteristics (SmPC) included the gravity method for intravenous administration, using a system with two needles, one connected to a NaCl 0.9% solution, with or without a perfusion pump, using gravity to facilitate the flow of the radiopharmaceutical.
This method was adopted and optimized due to incidents during administration.

What was done?

Optimization of the administration method of lutetium (177Lu) oxodotreotide to maximize the administered radioactivity and enhance protection for healthcare professionals.

How was it done?

The first administration using the described method occurred in October 2022.
Subsequent treatments required transferring the radiopharmaceutical to a syringe and using a syringe pump due to incidents during administration.
A perfusion pump was later introduced to manage the flow of NaCl 0.9% solution.
In May 2024, a three-way stopcock was connected to the short needle.

What has been achieved?

Since October 2022, 23 administrations have been conducted. In the first, the percentage of remaining radioactivity in the vial was 2.19%.
The use of a syringe pump increased handling and exposure risks and was rejected due to the lack of protective barriers.
Adding a perfusion pump to the NaCl 0.9% line didn’t fully resolve perfusion issues. This was resolve by adding a three-way stopcock connected to the short needle. The additional third line allows for a syringe to be attached and force air into the system, promoting the radiopharmaceutical flow.
The average remaining radioactivity improved from 1.71% to 0.98% after final optimization.
No incidents, such as leaks or perfusion issues, occurred after optimization.
This optimization reduced the remaining radiopharmaceutical activity values, ensuring complete administration. It also minimizes professional exposure and contamination risks, as the radiopharmaceutical remains in the original vial, as indicated in the SmPC.

What next?

We aim to apply this optimized method in other treatments with the same radionuclide.

×

Deadline extended to July 15th

Problems caused by shortages are serious, threaten patient care and require urgent action.

Help us provide an overview of the scale of the problem, as well as insights into the impact on overall patient care.

Our aim is to investigate the causes of medicine and medical device shortages in the hospital setting,  while also gathering effective solutions and best practices implemented at local, regional, and national levels.

×

Join us in Prague for the 2nd edition of BOOST!

Secure your spot in the Movement for Shortage-Free World

BOOST is where visionaries, innovators, and healthcare leaders come together to tackle one of the biggest challenges in hospital pharmacy—medicine shortages.