

Dr. Torsten Hoppe-Tichy

Printing Drugs

The "Why" and "How" from the perspective of a hospital pharmacist

Conflict of Interest

THT works in a project around 2D/3D-Printing together with

- → Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Germany
- → DiHeSys Digital Health Systems GmbH, Munich, Germany
- → Gen-Plus GmbH, Munich, Germany

without any financial funding or support

Questions

After attending this seminar participants should be able to answer the following questions

Q1: What are the advantages of "Printing Medicines"?

Q2: What is one of the biggest challenge of printing on orodispersible films?

Q3: What are the patient populations with a possible unmet need regarding printed medicines?

First at all ...

But, for heavens sake, why shall we print drugs?

Some thoughts on automating

Why is there a need to print drugs?

Is this unmet need the same in any patient group?

The local level approach, perspective Heidelberg University Hospital (UKHD)

How?

Project planing at UKHD

1st Problem^{DE} (only???)

Small Scale Production in Hospitals^[DE]

drug production in German hospital pharmacies

```
because
```

```
no drug in the market (wrong dose, route of application)
```

```
e.g. child care, "ready-to-administer" syringes
```

produced from licensed proprietary medicinal products available in the market (→ reworking)

drug too expensive or drug shortages

```
e.g. rare diseases
```

produced from "cheap" raw substances if available in the market

Small-Scale Production in Hospitals^[DE]

```
"extemporaneous formulation"
individual production for a single patient
e.g. special dose for children → capsules, solutions
"real" small-scale production
batch production for a patient group
```

e.g. drug not available or not "ready-to-administer"

The biggest challenges for health systems in the near future

The biggest challenges for health systems in the near future

→ financing

The biggest challenges for health systems in the near future

- → financing
- → staffing/staff recruitment

The biggest challenges for health systems in the near future

- → financing
- → staffing/staff recruitment

The biggest challenges for health systems in the near future

- → financing
- → staffing/staff recruitment

Automating should take place wherever possible!

The biggest challenges for health systems in the near future

- → financing
- → staffing/staff recruitment

Automating should take place wherever possible!

cytotoxic reconstitution, TPN (compounding robots), logistics (unit-dose, picking robots), extemporaneous formulations (2D/3D-printing),

2nd Problem

Problems in Special Patient Groups

Children

dose of commercial available drugs often has to be adapted

problems with swallowing tablets or capsules

problems with taste of solutions

no data on stability when mixed with food (baby food/mash)

Problems related to modification of commercially available oral dosage forms

Tablets crushed or divided in halves or even quarts Capsules opened and powder mixed with some liquid or food Content of ampoules for injection mixed with some liquid

Loss of efficacy and irritation of the stomach (coated tablets), inaccurate dosing, altered absorption, stability problems, bad taste

Good alternatives:

- Minitablets
- Orodispersible dosage forms
- Standardized and nonstandardized pharmacy preparations

Environment: Nursing Home

possible problem-solving model

What does it mean to implement such a system in hospital pharmacy?

"What does it mean to implement such a system in hospital pharmacy?"

- → you need partners

 development, implementation, research, clinical study,
- → you should have an innovation-friendly environment
- you need the money
- → you have to find enthusiastic pharmacists in your department
- → your team should have enough knowledge around drug production issues

Implementation/Research

Decision → Which drug should be studied?

Analytics → HPLC method

Production of ink

Solvent?

Stability testing for selected ink (→ stress tests)

Substrate development (→ Which kind of orodispersible film¹?)

Compatibility/Stability testing of ink/solvent on ODF

Adaption → ink, thickness of ODF, printing process, temperature

Questions before you start

Solubility

Is the drug soluble in an "printing-appropriate" solvent?

Is the drug stable in the ink (solvent)?

Is the ink printable?

Will the concentration of the ink be high enough to get a dose printed?

Is the ink (solvent) compatible with the ODF chosen?

Questions before you start

Orodispersible films (ODF)

which is the right formulation of the ODF

(physical) stability

disintegration time

release of drug

carrying capacity ("ink")

storage conditions

compatibility with ink

Our Wishlist

extemporaneous production of ink should be possible in hospital pharmacy

changing ink should be easy

easy cleaning procedure of printhead is a prerequisite

cross contamination protocols

different ODFs should be easily available (like empty capsules)

easy and cost-effective packaging of printed ODFs should be developed

Conclusion

In our center children with the need for individualized oral dosages are the target population

Geriatric patients with polypharmacy¹ might be another patient population

2D-Printing on ODF is the preferred method at UKHD

