

Vancomycin pharmacokinetics in alcohol and intravenous drug abusers

E. Farré Ayuso, P. Villarón Hernández, D. Soy Muner, E. Carcelero Sanmartín, J. Ribas Sala Pharmacy Service. Hospital Clínic Barcelona. Spain.

Background

• Elimination of vancomycin is primarily by glomerular filtration (80-90%), but the liver may also be involved to a small extent.

• Chronic consume of ethanol induces hepatic enzymes and can lead

Purpose

To characterize vancomycin pharmacokinetic parameters in:

to hepatic damage. Both factors could affect vancomycin elimination.

• Moreover, the use of drugs of abuse could also affect vancomycin clearance.

- non-cirrhotic alcoholics
- patients with alcohol-induced cirrhosis
- intravenous drug abusers (IVDA).

Methods

- Retrospective study in the aforementioned patients treated with vancomycin and therapeutic drug monitoring (TDM), between 2009-2012, in a Tertiary University Hospital.
- Clinical and pharmacokinetic reports from TDM (PKS Abbot[®]) were reviewed to obtain demographic characteristics, hepatic/ renal surrogates, initial/recommended dosage, steady state (SS) distribution volume (Vd^{SS}), clearance (CL), C^{SS}_{min} and C^{SS}_{max}.
- Control values were obtained from patients with normal renal function from an in-house internal database.
- Therapeutic target was 7-12 mg/L for C^{SS}_{min}.
- Patients with renal failure (creatinine clearance: CLcr < 60 mL/min) were excluded.
- Results are shown as mean ± SD (T-test for comparisons to controls).

Results

Sixty-five patients were included. Demographic data were similar between groups (table 1).

	Control	Non-cirrhotic alcoholics	Cirrhotic	IVDA
Number of patients	20	18	18	9
Age(years)	59.45 ± 13.20	52.67 ± 11.4	58.5 ± 10.53	42.8 ± 9.48
Sex (%male)	75	100	88.8	88.8
Weight(kg)	69.6 ± 9.84	84.11 ± 25.30	73.44 ± 15.63	74.7 ± 17.78
Albumin (g/L)	32.55 ± 3.09	27.73 ± 6.49	25.3 ± 5.85	29 ± 3.65
Bilirrubin (mg/dL)	1.126 ± 1.05	0.80 ± 0.82	4.90 ± 5.85	1.24 ± 1.34
ClCr Crockoft-Gault (mL/min)	96 ± 20.69	134.72 ± 39.98	111.6 ± 24.27	135.6 ± 28.54

 Table 1. Demographic data

However, there are some differences between groups:

- IVDA patients were significantly younger than patients in other groups.
- Non-cirrhotics alcoholics were heavier than the rest of groups.
- Albumin values were lower in alcoholic patients. Cirrhotic patients were also characterized by higher bilirrubin values.

Pharmacokinetic results are shown in table2.

	Control	Non-cirrhotic alcoholics	Cirrhosis	IVDA
CL (L/h)	5.27 ± 1.47	6.40 ± 2.16	4.27 ± 1.18*	6.53 ± 1.91
Vd ^{ss} (L/Kg)	0.75 ± 0.33	0.64 ± 0.16	0.68 ± 0.10	0.59 ± 0.09
Initial dosage (mg/kg/day)	29.23 ± 5.75	26.55 ± 7.35	27.28 ± 9.01	28.05 ± 6.12
C ^{SS} _{min} (mg/L)	9.76 ± 3.49	7.91 ± 4.26	10.37 ± 4.51	5.30 ± 3.04*
C ^{SS} _{max} (mg/L)	22.65 ± 8.45	16.65 ± 5.09*	23.37 ± 6.94	16.21 ± 4.29*

Table 2. Pharmacokinetic data. *p<0.05</th>

• As regards to pharmacokinetic parameters (CL, Vd^{SS}), significant differences were only observed in CL in cirrhotic patients (p= 0.02).

• A tendency to higher CL values in non-cirrhotic alcoholic patients and IVDA is present in these data, as well.

• Although initial dosages were similar to control group, C_{min}^{SS} and C_{max}^{SS} values were significantly lower in IVDA.

• It is also remarkable that the majority of patients were men.

Conclusions

• Vancomycin CL is significantly decreased in cirrhotic patients, probably due to hepatorenal syndrome. An initial reduced dosage might be considered.

• Vancomycin CL tends to be higher in alcoholics and in IVDA patients but results are not significant. Higher doses could be needed to obtain therapeutic concentrations.

• Therefore, vancomycin TDM is highly advisable in all these groups of patients.

References

- 1. William E. Evans, Jerome J. Schentag, William J. Jusko. Applied Pharmacokinetics Principles of Therapeutic Drug Monitoring. Third Edition (1992). Applied Therapeutics, Vancouver, 1980.
- 2. Rybak MJ et al. Vancomycin pharmacokinetics in burn patients and intravenous drug abusers. Antimicrobial Agents Chmerother. 1990; 34:792.
- 3. Gerald E. Schumacher. Therapeutic Drug Monitoring. Appleton and Lange. Norwalk, Connecticut, 1995.

Authors have no conflict of interest in this study. 18th EAHP Congress, Paris, France.

