Congress 2021 VIRTUAL

Chemotherapy Dose Banding

Development and Implementation

Richard Nuttall

Electronic Prescribing Pharmacist
The Royal Marsden NHS Foundation Trust, London

Congress 2021 VIRTUAL

Disclosure

Relevant Financial Relationship

None

Off-label Investigational Uses

• None

Summary

- Learning Objectives
- Self Assessment Questions
- The Evolution of Dose Banding
- The Principles of Dose Banding
- Implementation by NHS England
- Evidence
- Relevance to Pharmacy Practice
- Review of the Self Assessment Questions
- Take-Home Messages

Learning Objectives

- Understand the principles of dose banding
- ... and the benefits for patients, doctors and other providers
- Implementing in your own practice
- Next steps for standardising chemotherapy

Self-assessment questions

1. Can syringe size affect dose bands?

2. Do you think dose banding can be implemented in paediatrics?

3. If a drug has an absolute maximum dose (e.g. vincristine 2mg), should this be rounded to the nearest dose band?

Congress 2021 VIRTUAL

The Evolution of Dose Banding

How did we get there?

How accurate do our doses need to be?

How accurate do our doses need to be?

Pharmaceutical	Patient Size	Drug Handling
Labelled Vial	BSA Equation	Histogram of % of 'Correct' Dose Actually Administered
Concentration ±5%	±0.05m ²	Administered
Product	Height	
Shelf-Life -5%	±2.5cm	
In-use	Weight	
Shelf Life -10%	±1.5kg	_=====
Syringe		88 90 92 94 96 98 100 102 104 106 108 110 112 114 116
Accuracy ±4%		Distribution

How accurate do our doses need to be?

Pharmaceutical	Patient Size	Drug Handling
Labelled Vial	BSA Equation	Histogram of % of 'Correct' Dose Actually Administered
Concentration ±5%	±0.05m ²	Administered
Product	Height	
Shelf-Life -5%	±2.5cm	
In-use	Weight	
Shelf Life -10%	±1.5kg	_====
Syringe		88 90 92 94 96 98 100 102 104 106 108 110 112 114 116
Accuracy ±4%		Distribution

So why do it?

- ✓ Small number of syringe sizes needed to cover all doses stock holdings do not need to be large
- ✓ Batch production has better QA and stability long shelf life.
- ✓ Buy in or prepare in advance (no on-the-day making) no delays
- ✓ Remove from the fridge, label it, and send it up fast dispensing
- ✓ Last minute cancellation? Return with a high chance of reuse less wastage

Dose Banding Wars

Logarithmic

- ✓ Easy for 20% dose reductions
- ✓ Fewest possible doses
- Difficult for almost all other uses
- Doses not measurable

Surface Area Ranges

- Need new ranges for each mg/m² dose
- Decimal points vary in different systems (1.7mg vs 1.73m²)
- Doesn't work for mg/kg or carbo

Dose Ranges

- ✓ Fewer doses if logarithmic-like
- ✓ Doses measurable
- ✓ Works for all dose methods incl. carbo
- ✓ Works for expensive drugs (vial rounding)

Congress 2021 VIRTUAL

Principles of Dose Banding

Of Systemic Anti-cancer Therapies

A new standard

- Working group in Manchester (Jan 2016) with pharmacists and pharmacokinetics researcher from:
 - 2 cancer hospitals (Marsden & Christie),
 - 1 district general hospital (Durham & Darlington),
 - 1 large teaching hospital (Sheffield)
- Three types of dose banding:
 - Standard set of band volumes (and doses) agreed for inexpensive drugs
 - High cost drugs (rounded to nearest vial sizes or fractions)
 - Multiple syringe method ('pick and mix') for syringe pumps
- Note it is the <u>volume-derived doses</u> that are banded (not surface area or patient weight etc.)
- Therefore the dose calculation method (mg/m² etc.) does not matter

The Volume Epiphany

- When banding many drugs the SAME VOLUMES kept appearing – because they're easy to draw up
- Why not have one set of volumes instead? ONE SET!
- Doses would derive from that volume set for any drug based on its concentration

Max Variance	±6% ±10% Non- Cytotoxics	

#EAHP2021

www.eahp.eu

Max Variance	±6% ±10% Non- Cytotoxics
Dose Reducable	~ 20% 2-3 bands

#EAHP2021

www.eahp.eu

Max Variance	±10% Non-
Dose Reducable	~ 20%
Measurable	

#EAHP2021

www.eahp.eu

Max Variance	±6% ±10% Non- Cytotoxics	Volume Table	Same table All drugs (Except expensive)	
Dose Reducable	~ 20% 2-3 bands			
Measurable	85% Fill Whole Graduations			

#EAHP2021

www.eahp.eu

Max Variance	±6% ±10% Non- Cytotoxics	Volume Table	Same table All drugs (Except expensive)	
Dose Reducable	~ 20% 2-3 bands	Inventory	Minimised 70% doses = 5 bands	
Measurable	85% Fill Whole Graduations			

#EAHP2021

www.eahp.eu

Max Variance	±6% ±10% Non- Cytotoxics	Volume Table	Same table All drugs (Except expensive)	
Dose Reducable	~ 20% 2-3 bands	Inventory	Minimised 70% doses = 5 bands	
Measurable	85% Fill Whole Graduations	Containers	n + 1	

Max Variance	±6% ±10% Non- Cytotoxics	Volume Table	Same table All drugs (Except expensive)	Expensive Drugs	¹ / _{2,} ¹ / _{3,} ¹ / ₄ Vials
Dose Reducable	~ 20% 2-3 bands	Inventory	Minimised 70% doses = 5 bands		
Measurable	85% Fill Whole Graduations	Containers	n + 1		

Max Variance	±6% ±10% Non- Cytotoxics	Volume Table	Same table All drugs (Except expensive)	\$ Expensive Drugs	¹ / _{2,} ¹ / _{3,} ¹ / ₄ Vials
Dose Reducable	~ 20% 2-3 bands	Inventory	Minimised 70% doses = 5 bands	‡‡ Break points	√AxB
Measurable	85% Fill Whole Graduations	Containers	n + 1		

	_
/	

Max

Variance

±6%

±10% Non-Cytotoxics

Volume

Table Same table
All drugs
(Except expensive)

Expensive Drugs

¹/_{2,} ¹/_{3,} ¹/₄
Vials

4

Dose Reducable ~ 20%

2-3 bands

Inventory

Minimised 70% doses = 5 bands ‡‡ Break points

 $\sqrt{A} \times B$

Measurable

85% Fill
Whole
Graduations

Containers

n + 1

 \bigcirc

Max Dose

Will be a band

Implementation by NHS England

Standardising across an entire health economy

Stakeholder forums and training days

- NHS Clinical Reference Groups (CRGs) clinicians, experts, commissioners, patients who advise the NHS on service provision
 - Medicines Optimisation CRG Dose standardisation group created here!
 - Cancer CRG
- NHS Pharmaceutical Aseptic Services Group (PASG) advise NHS on aseptic prep.
- Pharmacists: BOPA (oncology pharmacists)
- Nurses: UKON (oncology nurses)
- Clinicians: Royal College of Physicians
- Commercial Suppliers: Work 18 months in advance

Maintenance (New Drugs)

NHS England Dose Standardisation Group

- Meet monthly to work on new drug tables
- Tables used in the NICE application process

National Institute for Clinical Excellence (NICE)

- Assess new drugs for use for in the NHS
- Banding tables assist in the financial assessment of cost and wastage

Published Tables NHS England website

https://www.england.nhs.uk/commissioning/spec-services/npc-crg/group-b/b02/

Standardise product presentation

• Fluid type If drug stable in >1 fluid type (glucose, NaCl) agree one

• Volume Variable volume drugs have bag sizes which have

overlapping dose ranges Agree upper & lower doses for each bag

Paclitaxel	Dose range for each bag size						
Bag choice		ov	erlap	erlap			
100mL	30	to	120				
250mL		75		to	300		
500mL				150		to	600

- Storage (protect from light, refrigerate)
- Expiry Agree format: best before vs use by vs do not use after If we all use the SAME product we can purchase together

Other problems & solutions

- Gemcitabine now has licenced bands vol varied between doses – not usual practice
- **Gemcitabine** 2 concs 38mg/mL & 100mg/mL Separate tables *pick one!*

What if supplier uses 100mg/mL for batched doses and you make the others with 38mg/mL? Avoid – use same strength / amend rare doses

- 5-FU 2 concs 25mg/mL & 50mg/mL
 1 double the other. Use 50mg/mL for banding double the volume to get 25mg/mL doses
- Doubling a volume will usually give a measurable dose – but halving a volume may not

Implementation - Progress

Bortezomib

Data from 259,851 doses

Jan-Mar 2015:

- 67 different doses
- Top 5 doses = 58% of administrations

Jan-Mar 2019:

>90% of administrations in 5 bands (1.8, 2, 2.25, 2.5, 2.75mg)

Implementation - Progress

Rituximab (Haematology)

Data from 174,401 doses

Jan-Mar 2015:

- 62 different doses
- Top 5 doses = 74% of administrations

Oct-Dec 2018:

 >85% of administrations in 5 bands (600, 650, 700, 800, 900mg)

Evidence

Is more required?

Evidence

- Is dose banding having any clinical effect on cancer treatment?
- More and more papers are being published in support of dose banding including:
 - Standard chemotherapy
 - Monoclonal antibodies
 - Paediatrics (children appear to have no ill effects, but infants require more data)

But we'd like more...

Standard Chemotherapy

GJ Sewell, 2006

 Dose banding 5-FU made no difference to the AUC exposure to patients

E Chatelut, 2012

 6 drugs tested: Cisplatin, docetaxel, paclitaxel, doxorubicin, irinotecan, topotecan – no significant difference in AUC / plasma exposure

In general – inter-patient variation in drug handling was more than anything contributed by dose banding in AUC exposure

Monoclonal antibodies & biologics

JJMA Hendrikx, 2017

- First significant paper on mabs
- Wide therapeutic window / flat dose-response relationship
- No reduced clinical efficacy after fixed dosing
- Most mabs can be 'rounded' to 1 or 2 'bands'
- We use 10% variance for mabs conservative
- More than half of new mabs have flat doses
- Remember 10% does not apply to conjugates!

##eahp Congress 2021

Monoclonal antibod

Table 1. Monoclonal antibodies approved for treatment of cancer and a proposal for fixed dosing

Generic name	Approved dose	Therapeutic window ^a	Volume of distribution at steady state (L)	Body weight effect on volume of distribution ^b	Clearance (L/day)	Body weigh effect on clearance ^b
Bevacizumab	5 mg/kg; 2 weekly 10 mg/kg; 2 weekly 15 mg/kg; 3 weekly	5–15 mg/kg	2.66	0.411	0.207	0.368
Catumaxomab	Day 0: 10 ug Day 3: 20 ug Day 7: 50 ug Day 10: 150 ug	Intraperitoneal administration with limited absorption into the systemic circulation.				
Cetuximab	250 mg/m² weekly (400 mg/m² loading dose)	250-400 mg/m ²	5.22	0.42 (effect of BSA was evaluated)	0.497	None
lpili mumab	3 mg/kg; 3 weekly	3-10 mg/kg	4.15	0.708	0.360	0.642
Nivolumab	3 mg/kg; 2 weekly	1-10 mg/kg	8.0	0.580	0.228	0.707
Obinutuzumab	1,000 mg per cycle (cycle 2–6)	1,000-2,000 mg	2.76	0.383	0.083	0.231
Ofatumumab	1,000 mg; 4 weekly (untreated CLL) 2,000 mg; weekly (refractory CLL)	1,000-2,000 mg	3.26	0.076	0.369	0.229
Panitumumab	6 mg/kg; 2 weekly	2.5-9 mg/kg	3.66	0.526	0.269	0.411
Pembrolizumab	2 mg/kg; 3 weekly	1-10 mg/kg	8.1	0.489	0.23	0.595
Pertuzumab	420 mg; 3 weekly (840 mg loading dose)	420-1,050 mg	3.07	0.747	0.239	0.516-0.589
Ramucirumab	8 mg/kg; 2 weekly	8-10 mg/kg	5.5	Not reported	0.336	Not reported
Rituximab	375 mg/m ² ; interval is variable	375-2,250 mg	2.98	0.73	0.257	1.02
Trastuzumab	2 mg/kg/week (with an additional 2 mg/kg as loading dose)	1->8 mg/kg	2.95	0.556	0.225	1.07

Fixed dose is proposed if the effect of body weight on the volume of distribution and clearance is minimal (<0.5). If the effect reported, a fixed dosing approach might be considered for practical reasons.

The therapeutic window is based on a minimum effective dose at the interval of the approved dose and a maximum tolerated (or ^bThe effect is presented as the exponent used in population pharmacokinetics models in formula 1 to correct for the effect of body Abbreviations: BSA, body surface area; EMA, European Medicines Agency; CLL, chronic lymphocytic leukemia.

Generic name	Proposed fixed dose				
Bevacizumab	40-140 kg: 600 mg, 2 weekly	T			
Catumaxomab	Approved fixed dose				
Cetuximab	1.3-2.2 m ² : 500 mg, weekly (with 800 mg loading dose)				
Ipilimumab	40–60 kg: 150 mg, 3 weekly 60–100 kg: 250 mg, 3 weekly 100–140 kg: 350 mg, 3 weekly				
Nivolumab	40-140 kg: 240 mg, 2 weekly				
Obinutuzumab	Approved fixed dose				
Ofatumumab	Approved fixed dose				
Panitumumab	40–80 kg: 300 mg, 2 weekly 80–140 kg: 500 mg, 2 weekly				
Pembrolizumab	40-140 kg: 150 mg, 3 weekly				
Pertuzumab	Approved fixed dose				
Ramucirumab	Insufficient data				
Rituximab	1.3–2.2 m ² : 800 mg per administration				
Trastuzumab	40-140 kg: 450 mg, 3 weekly				
www.eanp.eu @eanpofficial					

Paediatrics

M White-Koning et al, 2017

- Tested 5 drugs: dactinomycin, busulfan, carboplatin, cyclophosphamide and etoposide
- Compared AUC of calculated doses with NHS England dose bands
- No statistical difference seen

Some benefits of banding not seen in paediatrics:

- Wider spread of doses, lower use of each dose
 higher risk of wastage
- Smaller bag volumes (non-standard) unlikely to be batched with adults

Relevance to Pharmacy Practice

- Pharmacy is the driving force behind dose banding
- Pharmacists devised the dose banding method and tables

- are behind the published papers of evidence
- have educated the wider clinical teams,
- have surveyed, and sought clinical approval
- are designing the standard product definitions
- are liaising with industry for cheaper batches & supply
- adjust chemotherapy doses on prescriptions to dose bands

Future Perspectives

- The future is already here in the UK
- Licenced products are becoming available 1 already in use
- Expecting 2 or 3 this year
- Manufacturing industry now liaise with us in advance
- Batch purchasing of pre-made bands accounts for a considerable percentage of our inventory – we're working towards 70%
- Group purchasing with other hospitals is the next step
- Our dose tables are available online!

References

- NHS commissioning » Chemotherapy dose standardisation (england.nhs.uk)
- Pharmacist develops dose-banding system. Pharm J. 1996; 256:297, News.
- Baker JP, Jones SE. Rationalisation of chemotherapy services in the University Hospital Birmingham National Health Science Trust. Journal of Oncology Pharmacy Practice. 1998;4(1):10-14.
- Plumridge RJ, Sewell GJ. Dose-banding of cytotoxic drugs: a new concept in cancer chemotherapy. Am J Health Syst Pharm. 2001 Sep 15;58(18):1760-4.
- Sewell GJ. The Clinical Impact of Dose-Banding. <u>http://www.gerpac.eu/the-clinical-impact-of-dose-banding</u>. Web page accessed 22/01/21.
- Kaestner S, Sewell G. Dose-banding of carboplatin: rationale and proposed banding scheme. J Oncol Pharm Pract. 2007 Jun;13(2):109-17.
- Kaestner SA, Sewell GJ. A national survey investigating UK prescribers' opinions on chemotherapy dosing and 'dose-banding'. Clin Oncol (R Coll Radiol). 2009 May;21(4):320-8.

- Zavery, Burhan & Marsh, G. (2011). Could logarithmic dosing change the way cytotoxics are prescribed?.
 Clinical Pharmacist. 3. 116-118.
- Chatelut E, White-Koning ML, Mathijssen RH, Puisset F, Baker SD, Sparreboom A. Dose banding as an alternative to body surface area-based dosing of chemotherapeutic agents. Br J Cancer. 2012 Sep 25;107(7):1100-6.
- Hendrikx JJMA, Haanen JBAG, Voest EE, Schellens JHM, Huitema ADR, Beijnen JH. Fixed Dosing of Monoclonal Antibodies in Oncology. Oncologist. 2017 Oct;22(10):1212-1221. doi: 10.1634/theoncologist.2017-0167. Epub 2017 Jul 28.
- White-Koning M, Osborne C, Paci A, Boddy AV, Chatelut E, Veal GJ. Investigating the potential impact of dose banding for systemic anti-cancer therapy in the paediatric setting based on pharmacokinetic evidence. Eur J Cancer. 2018 Mar;91:56-67.

Take-Home Messages

- It is possible to use two systems to dose band, and between them band chemotherapy, biological agents and paediatrics
- Don't stop with just the dose standardise your product definitions (volumes and fluids) too
- Buy in batches and reduce costs