CPC049

Anti-Factor Xa chromogenic assay for measuring rivaroxaban plasma concentrations using calibrators and controls: results of a multicentre field trial

Meyer Michel Samama^{1,2}, Genevieve Contant³, Theodore E Spiro⁴, Elisabeth Perzborn⁵, Céline Guinet², Yves Gourmelin³, Léna Le Flem², Gabriele Rohde⁵, Jean Luc Martinoli³, for the Rivaroxaban Anti-Factor Xa Chromogenic Assay Field Trial Laboratories

¹Hôtel-Dieu University Hospital, Paris, France; ²Biomnis Laboratories R&D, Ivry-sur-Seine, France; ³Diagnostica Stago SA, Gennevilliers, France; ⁴Bayer HealthCare Pharmaceuticals Inc., Montville, NJ, USA; ⁵Bayer HealthCare Pharmaceuticals, Wuppertal, Germany

Introduction

- Rivaroxaban is an oral, direct Factor Xa inhibitor¹ that has been approved for the prevention and treatment of thromboembolic disorders
- Unlike some traditional anticoagulants, routine coagulation monitoring is not required with rivaroxaban² owing to its predictable pharmacokinetics and pharmacodynamics³⁻⁵
- In clinical practice, measurement of rivaroxaban exposure may be useful in some circumstances (e.g. prior to urgent surgery)
- Studies have indicated that routine clotting assays are not suitable for the quantitative measurement of rivaroxaban exposure, and anti-Factor Xa chromogenic assays have been identified as potential assays for the measurement of rivaroxaban plasma concentrations^{6,7}

Objective

To evaluate the suitability of anti-Factor Xa chromogenic assays for the measurement of rivaroxaban plasma concentrations (ng/ml) using rivaroxaban calibrators and controls, and to assess the inter-laboratory precision of the measurement

Methods

- Twenty-four centres in Europe and North America were provided with:
 - A set of rivaroxaban calibrators containing 0, 41, 209 and 422 ng/ml rivaroxaban
 - A set of pooled human plasma controls containing 20, 199 and 662 ng/ml rivaroxaban. The concentrations of rivaroxaban in the pooled human plasma controls were unknown to the participating laboratories
- The evaluation was carried out over 10 days by each laboratory using local anti-Factor Xa reagents (Table 1) as well as the centrally provided reagent, a modified STA® Rotachrom® assay
- Day-to-day precision and accuracy were evaluated by producing a calibration curve each day and by testing in duplicate three pooled human plasma controls
- The control plasma sample containing the highest concentration of ٠ rivaroxaban was diluted with calibrator containing 0 ng/ml rivaroxaban (1:3 dilution) and re-tested if the measured level was above the highest concentration limit of the calibration curve
- ٠ The rivaroxaban concentrations in the three control plasma samples were calculated from linear calibration curves generated using rivaroxaban calibrators by each participating laboratory

Results

- Inter-laboratory precision of the measurements (Table 2):
 - Local anti-Factor Xa reagents: the mean rivaroxaban concentrations (measured/actual values) were: 17/20, 205/199 and 668/662 (diluted sample)

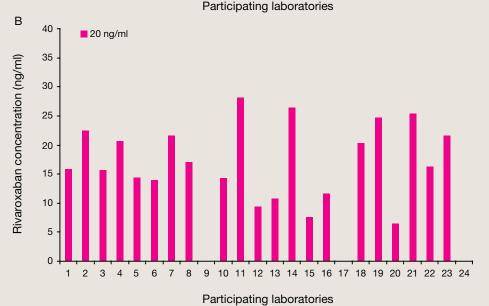
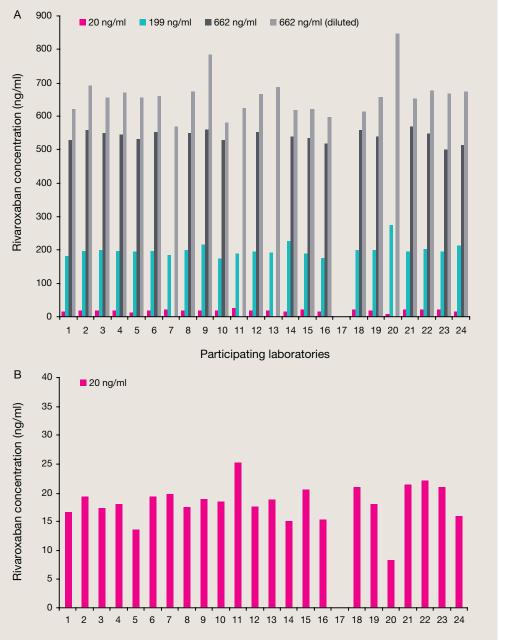



Figure 1. Rivaroxaban concentrations in control plasma samples measured using local anti-Factor Xa reagents. A) Measured values for plasma samples containing 20 ng/ml, 199 ng/ml, 662 ng/ml and diluted 662 ng/ml rivaroxaban, respectively; B) Measured values for the plasma sample containing 20 ng/ml rivaroxaban. Results are presented as median values from each site (N=21; including one laboratory that used the STA® Staclot® Heparin assay).

- ng/ml, and the coefficient of variation (CV) was 37.0%, 13.7% and 14.1%, respectively
- Modified STA® Rotachrom® method: the mean rivaroxaban concentrations (measured/actual values) were 18/20, 199/199 and 656/662 (diluted sample) ng/ml, and the CV was 19.1%, 10.9% and 10.0%, respectively
- Intra-laboratory precision of the measurements (Table 2):
 - Local anti-Factor Xa reagents: the CV was 27.7% (20 ng/ml), 4.0% (199 ng/ml) and 5.2% (662 ng/ml; diluted sample), respectively
 - Modified STA[®] Rotachrom[®] method: the CV was 17.2% (20 ng/ml), 5.1% (199 ng/ml) and 5.8% (662 ng/ml; diluted sample), respectively
- Median rivaroxaban concentrations in all control plasma samples are shown ٠ in Figure 1 (using local reagents) and Figure 2 (using the modified STA® Rotachrom® test set-up) for each participating laboratory

Routine reagent			Diagnostica Stago			Instrumentation Laboratory		Siemens	Chromo- genix	Hyphen BioMed	
Two-step method (T) or Competition method (C)		С	Т	Т	Т	Т	Т	C	Т		
Routine instrument	Diagnostica Stago	STA-R	4	1						3	8
		STA Compact®		1	1						2
	Trinity Biotech	AMAX 190+		1							1
	Instrumentation Laboratory	ACL 9000				1		-			1
		ACL TOP®				3	1		1		5
		ACL Elite [®] Pro							1		1
	Siemens	BCS®						1		1	2
	Sysmex	CA-1500							1		1
Total			4	3	1	4	1	1	3	4	21

Table 2. Inter- and intra-laboratory precision of rivaroxaban plasma concentration measurements with anti-Factor Xa chromogenic assays using rivaroxaban calibrators and control plasma samples

Human plasma controls – theoretical values (ng/ml)	Ν	20	199	662	662 (diluted*)
Inter-laboratory precision					
Local anti-Factor Xa reagents (ng/ml)					
Mean ± SD	20	17±6.4	205±28.2	576±106.5	668±94.4
Mean CV (%)		37.0	13.7	18.5	14.1
STA [®] Rotachrom [®] (ng/ml)					
Mean ± SD	23	18±3.4	199±21.7	541±12.7	656±65.8
Mean CV(%)		19.1	10.9	2.3	10.0
Intra-laboratory precision					
Local anti-Factor Xa reagents (ng/ml)					
Mean CV (%)	20	27.7	4.0	2.4	5.2
Two-step methods: mean CV (%)	13	30.3	4.2	2.5	5.3
Competition methods: mean CV (%)	7	22.8	3.6	2.3	5.1
STA [®] Rotachrom [®] (ng/ml)					
Mean CV (%)	23	17.2	5.1	2.5	5.8

N=20 for the local reagents (a clot-based assay, STA® Staclot® Heparin was used by one laboratory, which was excluded from these analyses); N=23 for the modified STA® Rotachrom® test set-up. *Samples were diluted 1:3 with calibrator (containing 0 ng/ml rivaroxaban)

CV, coefficient of variation; SD, standard deviation

Participating laboratories

Figure 2. Rivaroxaban concentrations in control plasma samples measured using centrally provided reagents (STA® Rotachrom®). A) Measured values for plasma samples containing 20 ng/ml, 199 ng/ml, 662 ng/ml and diluted 662 ng/ml rivaroxaban, respectively; B) Measured values for the plasma sample containing 20 ng/ml rivaroxaban. Results are presented as median values from each site (N=23)

Conclusions

- The anti-Factor Xa chromogenic method can be used to assess rivaroxaban exposure (expressed in ng/ml), and the method is suitable for measuring a wide range of rivaroxaban plasma concentrations (approximately 20-660 ng/ml), with the use of rivaroxaban calibrators and controls
- Low rivaroxaban concentrations can be measured with acceptable \blacklozenge inter-laboratory precision with the use of a modified anti-Factor Xa method (the modified STA® Rotachrom® test set-up)
- Further validation of these methods would be helpful in clinical settings

References

- 1. Perzborn E et al. J Thromb Haemost 2005;3:514-521
- 2. Bayer Pharma AG. Xarelto® (rivaroxaban) Summary of Product Characteristics. 2011. Available at: http://www.xarelto.com/html/downloads/Xarelto Summary of Product Characteristics. 2011. Available at: html/down bycr mana Ad. Karcle (modulatify sammary of moduce cl of_Product_Characteristics_Dec2011.pdf. Accessed 2 March 2012.
 Kubitza D et al. Clin Pharmacol Ther 2005;78:412–421.
- 4. Mueck W et al. Clin Pharmacokinet 2008;47:203-216.
- Mueck W et al. Clin Pharmacokine 2011;50:675–686.
 Perzborn E et al. J Thromb Haemost 2009;7 (Suppl 2):379. Abstract PP-MO-185
- 7. Samama MM et al. Thromb Haemost 2010;103:815-825.

Disclosure of conflict of interest

This study was supported by Bayer HealthCare Pharmaceuticals and Janssen Research & Development, LLC (formerly Johnson & Johnson Pharmaceutical Research & Development, L.L.C.). Poster development was supported by Bayer HealthCare Pharmaceuticals and Janssen Research & Development, LLC. The data contained within this poster do not support or recommend the use of rivaroxaban in indications or countries in which it is not licensed.

Participant

DM Adcock, Englewood, CO, USA; F Angeloni, Hamilton, Ontario, Canada; P Bray, Philadelphia, PA, USA; M Campos, Porto, Portugal; WL Chandler, WA, USA; G Contant, Gennevilliers, France; C le Courvoisier-Flaujac, Paris, France; L Drouet, Paris, France; I Elalamy, Paris, France; J Estergreen, Washington, WA, USA; G Gerotziafas, Paris, France; I Gouin-Thibault, Ivry-sur-Seine, France; J McGraph, Hamilton, Ontario, Canada; MH Horellou , Paris, France; M Jacquemin, Leuven, Belgium; K Jochmans, Brussels, Belgium; M Hevelow, Philadelphia, PA, USA; S Kitchen, Sheffield, UK; C Legnani, Bologna, Italy; E Lindhoff-Last, Frankfurt, Germany; K Marchant. Cleveland. OH. USA: P Nouven. Reims. France; TL Ortel, Durham, NC, USA; T Paustian, Cleveland, OH, USA; MM Samama, Ivry-sur-Seine, France HM Schumacher, Mainz, Germany; P Sie, Toulouse, France; J Smith, Sheffield, UK; S Testa, Cremona, Italy; A Tripodi, Milan, Italy; J Weitz, Hamilton, Ontario, Canada; W Wijns, Brussels, Belgium.

Abstract CPC049 presented at the 17th Annual Congress of the European Association of Hospital Pharmacists (EAHP), Milan, Italy; 21–23 March 2012