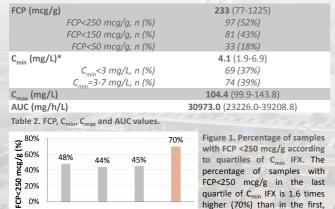
# ASSOCIATION BETWEEN FECAL CALPROTECTIN VALUES AND INFLIXIMAB TROUGH LEVELS IN INFLAMMATORY BOWEL DISEASE PATIENTS

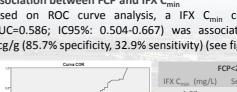
E. Santacana<sup>1</sup>, N. Padullés<sup>1</sup>, A. Padullés<sup>1</sup>, L. Rodríguez-Alonso<sup>2</sup>, J. Guardiola<sup>2</sup>, J. Bas<sup>3</sup>, CM Esteban<sup>1</sup>, H. Colom<sup>4</sup>. <sup>1</sup>Pharmacy. Hospital Universitari Bellvitge. Idibell. Barcelona, Spain. <sup>2</sup>Gastroenterology. Hospital Universitari Bellvitge. Idibell. Barcelona, Spain. <sup>3</sup>Immunology. Hospital Universitari Bellvitge. Idibell. Barcelona, Spain. 4Pharmacy and Pharmaceutical Technology Department, School of Pharmacy Universitat de Barcelona. Barcelona, Spain.

#### 6ER-001 **OBJECTIVES** BACKGROUND • First goal was to evaluate the relationship between fecal calprotectin The Monitoring of monoclonal Antibodies Group in Europe (MAGE) (FCP), as a measure of disease activity, and IFX trough concentrations recommends measuring biologics concentrations in inflammatory bowel (C\_min) in three groups of patients: (1) IFX C\_min< 3 mg/L, (2) IFX C\_min= 3-7 diseases (IBD)<sup>1</sup> and available evidence indicates that this strategy results mg/L and (3) IFX $C_{min}$ > 7 mg/L. in clinical benefit and in cost savings<sup>2</sup>. Routine therapeutic drug $\bullet$ A second goal was to determine the use of IFX $\mathrm{C}_{\mathrm{min}}$ as a clinical monitoring (TDM) of IFX and Bayesian prediction as a rational decision tool in combination with follow-up of clinical response for individual predictor of FCP<250 mcg/g and to assess the discriminate ability of dose adjustment has been implemented in our center. FCP to predict subtherapeutic IFX C<sub>min</sub> (defined as C<sub>min</sub>< 3mg/L). METHODS **Statistical and Pharmacokinetic analysis:** Study design and population: Prospective study of IBD patients treated •C<sub>max</sub> and AUC were estimated<sup>3</sup>, using Nonmem<sup>®</sup>7.3. with maintenance IFX between January 2014 and February 2017. • Receiver Operating Characteristic (ROC) curves were used to assess Evaluations: Blood samples, drawn immediately before IFX infusion to determine IFX $\mathrm{C}_{\min}$ and fecal samples, within the same IFX cycle of the discriminative ability of IFX $\rm C_{min}$ to predict FCP<250mcg/g and discriminative ability of FCP to predict IFX $C_{\rm min}{<}3\,$ mg/L. Statistical administration to determine FCP, were obtained during the study. analysis was performed using SPSSv19. •We measured IFX serum Cmin using a commercially available validated Ethical considerations: The study was approved by the Clinical enzyme-linked immunosorbent assay (ELISA) kit (Promonitor<sup>®</sup>). Research Ethics Committee and all patients gave written informed •FCP values, obtained within the same infusion cycle as $C_{\mbox{\scriptsize min}}$ , were consent. determined using ELISA. RESULTS **Study population** There is higher percentage of samples with $C_{min}$ IFX $\geq$ 3 mg/L when


A total of 89 patients were included, of whom 46.1% were women. Patients characteristics are shown in Table 1.

|  | Covariate                            | n=89 patients                      |  |  |  |
|--|--------------------------------------|------------------------------------|--|--|--|
|  | Gender                               | 41 (46.1%) female, 48 (53.9%) male |  |  |  |
|  | Diagnosis                            | 57 (64%) CD, 32 (36%) UC           |  |  |  |
|  | Weight                               | 70.5 Kg (60-83)                    |  |  |  |
|  | PCR                                  | 1.7 mg/L (0.9-4.7)                 |  |  |  |
|  | Albumin                              | 4.4 g/dL (4.2-4.7)                 |  |  |  |
|  | Smoking habit                        | 15 (17%)                           |  |  |  |
|  | Concomitant immunosupressive therapy | 62 (70%)                           |  |  |  |

Table 1. Patients characetristics. CD: Crohn's disease. UC: ulcerative colitis.


### FCP and IFX exposure

188 samples were analyzed. Overall mean FCP and IFX  $\mathrm{C}_{\mathrm{min}}\,\mathrm{were}$  233 mcg/g and 4.1 mg/L, respectively. Nine samples were positive for ATI (5%) (see Table 2). Figure 1 shows de percentage of FCP <250mcg/g according to IFX C<sub>min</sub>.



>6.9

(45%).



| F                                 | FCP<250 mcg/g |             |  |  |  |
|-----------------------------------|---------------|-------------|--|--|--|
| IFX C <sub>min</sub> (mg/L)       | Sensitivity   | Specificity |  |  |  |
| 1.90                              | 0.773         | 0.264       |  |  |  |
| 3.03                              | 0.691         | 0.439       |  |  |  |
| 4.11                              | 0.557         | 0.560       |  |  |  |
| 5.61                              | 0.412         | 0.736       |  |  |  |
| 7.00                              | 0.329         | 0.857       |  |  |  |
| 10.55                             | 0.082         | 0.934       |  |  |  |
| Table 4. Sensiti according to IF) |               |             |  |  |  |

29876

Figure 2. ROC for IFX C<sub>min</sub> to predict FCP <250 mcg/g.

A FCP< 26 mg/L (AUC= 0.596,IC95%: 0.509-0.683) was associated with IFX  $C_{min} \ge 3 \text{ mg/L} (100\% \text{ specificity}, 100\% \text{ sensitivity})$ 

mcg/g.

Note: This study was funded in part by grants from COFB 2013 (and from AGAUR (2014 SGR 1650).

## CONCLUSIONS

<1.9

1.9-4.1 4.1-6.9

Cmin IFX (mg/L)

✓ Significantly higher IFX C<sub>min</sub> were observed when FCP<250 mcg/g compared to FCP≥250 mcg/g. Also, percentage of samples with C<sub>min</sub>≥ 3 mg/L is higher when FCP<250 mcg/g vs FCP≥250 mcg/g (36% vs 28%).

✓ IFX C<sub>min</sub> was a modest predictor of FCP<250 mcg/g and FCP was a modest biomarker to predict C<sub>min</sub><3 mg/L.

quartile of Cmin IFX is 1.6 times

higher (70%) than in the first,

second and third quartiles

References: (1) Dressen E. Clinical Pharmacology: Advances and Applications 2017;9:101-111.. (2) Martelli L, Olivera P, Roblin X, et al. J Gastroenterol 2017; 52:19-25(..3) Fasanmade AA, Adedokun OJ, Blank M, et al. Clin Ther 2011;33:946-64.

Generalitat de Catalunya Departament de Salut

Institut Català de la Salut Gerència Territorial Metropolitana Sud







FCP<250 mcg/g vs FCP≥250 mcg/g (69% vs 57%). Also, the median C<sub>min</sub> was lower when FCP was ≥250 mcg/g compared with <250 mcg/g (re

| espectively 3.62 vs. 4.7 mg/L; p=0.043) (see Table 3). |                                   |             |             |  |  |  |  |
|--------------------------------------------------------|-----------------------------------|-------------|-------------|--|--|--|--|
|                                                        | FCP                               | < 250 mcg/g | ≥ 250 mcg/g |  |  |  |  |
|                                                        | n=188 samples                     | n=97 (52%)  | n=91 (48%)  |  |  |  |  |
|                                                        | C <sub>min</sub> IFX (mg/L)*      | 4,7         | 3,62        |  |  |  |  |
|                                                        | C <sub>min</sub> <3 mg/L, n (%)   | n=30 (31%)  | n=39 (43%)  |  |  |  |  |
|                                                        | C <sub>min</sub> =3-7 mg/L, n (%) | n=35 (36%)  | n=39 (43%)  |  |  |  |  |
|                                                        | C <sub>min</sub> >7 mg/L, n (%)   | n=32 (33%)  | n=13 (14%)  |  |  |  |  |
|                                                        |                                   |             |             |  |  |  |  |

C<sub>max</sub> IFX (mg/L) 102.8 107.03

CRP (mg/L) 1 2.5 Table 3. C<sub>min</sub>, C<sub>max</sub> and AUC between FCP. Values are shown as a median. \*p=0.043.

32386

## Association between FCP and IFX C<sub>min</sub>

AUC ((mg/L/h)

Based on ROC curve analysis, a IFX  $\rm C_{min}$  cut-off of >7 mg/L (AUC=0.586; IC95%: 0.504-0.667) was associated with FCP <250 mcg/g (85.7% specificity, 32.9% sensitivity) (see figure 2 and table 4).