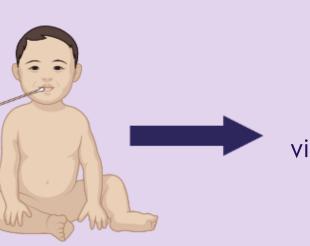
IMPACT OF PHARMACOGENETICS ON THE TOXICITY OF HIGH-DOSE METHOTREXATE IN A PAEDIATRIC POPULATION

DE LA JARA|, A.M.(1)[adrian_delajara@hotmail.com];IGLECIAS|,L.(1)[luciana.iglecias@gmail.com];BÁEZ-GUTIERREZ|, N.(2)[nerea.baez.sspa@juntadeandalucia.es];SÁNCHEZ|, A. (1)[almuweb06@gmail.com];PÉREZ|, C.(1)[cperezramirez87@gmail.com];CANTUDO|, M.R.(1)*[mariar.cantudo.sspa@juntadeandalucia.es]

(1) Hospital universitario Virgen de las Nieves, Pharmacy Department, Granada, Spain (2) Hospital Universitario Virgen del Rocio, Pharmacy Department, Sevilla, Spain

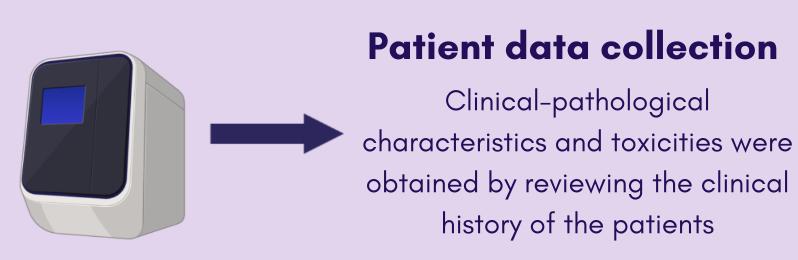
BACKGROUND AND IMPORTANCE

The great inter-individual variability in relation to **toxicities** derived from **high-dose methotrexate (HDMTX)** treatment may be caused by **genetic variants** in genes involved in the metabolism and transport of methotrexate (MTX). The study of this variants involved in MTX pathway could help to **predict** the toxicity profile associated to HDMTX treatment.


AIM AND OBJECTIVES

The **purpose** of this study was **to evaluate** the influence of **polymorphisms** in *MTR*, *MTRR*, *MTHFR*, *MTHFD1*, *ATIC* and *SLCO1B1* genes on the development of hepatic, hematologic and dermatologic **toxicities** among others, during the treatment with HDMTX in **pediatric oncology patients.**

MATERIALS AND METHODS


A multicenter retrospective study was carried out during 2021 in two third-level hospitals. The study has been approved by the Ethics and Clinical Research Committee of the Hospital with a prior informed consent of the patients for their inclusion in the study.

Real time PCR Polymorphisms were studied by via OpenArray™ by QuantStudio™ 12K Flex System using the

"TaqMan™PGx Express" array

Statistical analysis

Relation between pathologicalclinical features, polymorphisms and toxicities to treatment with HDMTX were studied using bivariate analysis with Software R 4.1.1 version

RESULTS

A total of 64 patients between 0-14 years old treated with HD-MTX last 10 years were included in this study (Table 1).

- Patients carrying the allele G of MTR rs3768142 variant showed a higher probability of presenting hepatotoxicity, gastrotoxicity and hemotoxicity.
- The analysis showed that patients with the allele G of MTRR rs3768142 variant had a higher incidence of hepatotoxicity.
- In addition, the presence of the **allele A** in *MTHFR* rs1801133 gen polymorphism indicated the presence of **hemotoxicity**.

Table 1. Association between different toxicities and genetic polymorfisms in 64 patients diagnosed with cancer treated with HD-MTX.

Toxicity	Gen	SNPs	Genotype	Ν	NO N(%)	Yes (Grade 1-4) N(%)	X ²	р	Ref. Cat.	OR	CI 95%
Hepatotoxicity	MTR	rs3768142	G	39	13 (33.33)	26 (66.66)	7.352	0.007	G	4.25	1.45-12.42
	MTRR	rs1801394	G	46	25 (54,35)	21 (45.65)	3.667	0.05	AA	3.1	0.95-10.11
Gastrotoxicity	MTR	rs3768142	G	39	10 (25.64)	29 (74.36)	15.591	0.00001	G	9.18	2.96-29.46
Hemotoxicity	MTHFR	rs1801133	А	45	2 (4.44)	43 (95.56)	4.337	0.037	Α	5.73	0.95-34.55
	MTR	rs3768142	G	39	1 (2.56)	38 (97.44)	5.451	0.0195	G	9.5	1.04-86.97

^{*}p-value by Pearson's Chi-square test. OR: Probability of occurrence. Cl: confidence interval.

CONCLUSION AND RELEVANCE

The **results** obtained in this study suggest that patients who present some of the **polymorfisms** indicated above may present a **higher rate of toxicity** in paediatric oncology patients with HD-MTX treatment. **Further studies** are required in order to achieve an **individualized therapy** that provides greater efficacy and less toxicity to the treatment of these patients.

Ultimately, the main objective of this study was to demonstrate that the use of **pharmacokinetics** and **pharmacogenetics** information on methotrexate in paediatric patients diagnosed with malignant tumours allows the **optimisation** of treatment with this drug.

These results could generate a significant benefit and direct clinical impact for both the patient and the healthcare institutions by reducing the incidence and severity of adverse effects as well as avoiding treatment failures.

REFERENCES

4CPS-061

Contact:

Adrián Manuel de la Jara Vera Hospital Universitario Virgen de las Nieves, Pharmacy Department E-mail: adrian_delajara@hotmail.com

