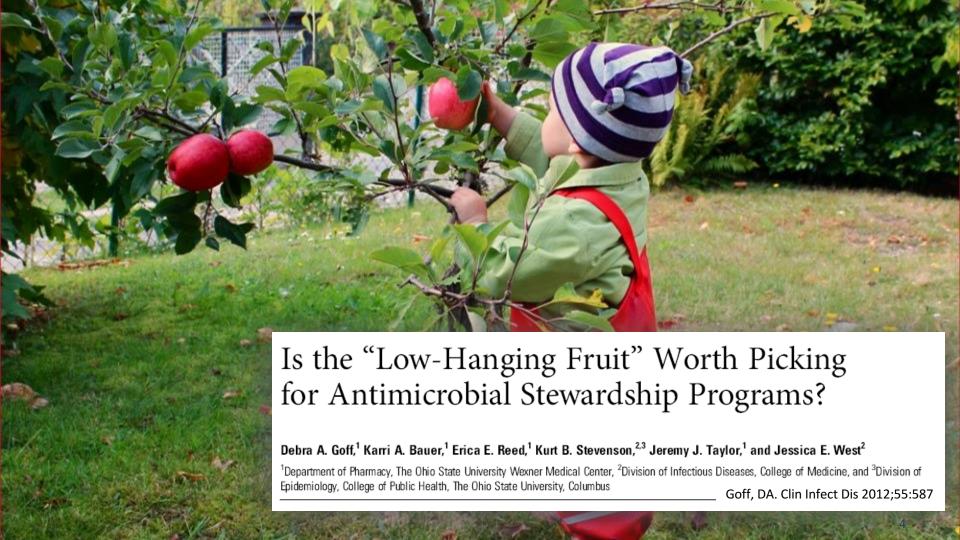
#### **CONSUMPTION SURVEILLANCE METHODS:**

## HOW TO COLLECT AND REPORT DATA HOW TO AVOID COMMON PITFALLS

Dr. Matthias Fellhauer

Schwarzwald-Baar Klinikum

Villingen-Schwenningen (Germany)


#### **DISCLOSURES**

Conflicts of interest:

Nothing to disclose

#### Questions (please answer YES or NO):

- RDD/1000 patients per day is a globally accepted measure for antibiotic consumption
- There is not yet a well accepted measure for antibiotic consumption in pediatrics
- Consumption data should be collected at least monthly



# WHY consumption data should be monitored

# **Surveillance of Antibiotic Consumption**

is recommended in evidence-based ABS guidelines:

- IDSA/SHEA DELLIT (USA 2007)
- DGI de With (D/A 2013)
- IDSA BARLAM (USA 2016)



Every Antibiotic Stewardship Program must measure antibiotic use ...

BARLAM et al. 2016

#### S3-Guideline

Strategies to enhance rational use of antibiotics in hospitals: a guideline by the German Society for Infectious Diseases

#### Requirements

- Team of ABS Experts
- Availability of surveillance data on
  - pathogens
  - resistance
  - antimicobial consumption

#### ABS core strategies

- local treatment guidelines
- antiinfective formulary
- approval requirements
- education
- proactive audits
- quality indicators

## Supplemental ABS strategies

Programs for treatment optimisation



- De-escalation
- duration of treatment
- parenteral-to-oral conversion
- dose optimisation
- Scheduled switch
- Rules for communication of mibi results
- Rules for the management of patients with MR microorganisms and C .difficile
- IT-support

Table 3. Trends in consumption of antibiotics for systemic use in the hospital sector, EU/EEA countries, 2011–2015 (expressed as DDD per 1 000 inhabitants and per day)

| Country            | 2011 | 2012 | 2013 | 2014 | 2015 | Trends in antimicrobial consumption, 2011–2015 | Average<br>annual<br>change<br>2011–2015 | Statistically<br>singificant<br>trend |
|--------------------|------|------|------|------|------|------------------------------------------------|------------------------------------------|---------------------------------------|
| Netherlands        | 0.97 | 0.96 | 0.95 | 0.95 | 0.98 |                                                | <0.01                                    |                                       |
| Hungary            | 1.20 | 1.23 | 1.20 | 1.25 | 1.23 |                                                | 0.01                                     |                                       |
| Norway             | 1.47 | 1.44 | 1.39 | 1.41 | 1.40 | -                                              | -0.02                                    |                                       |
| Bulgaria           | 1.45 | 1.40 | 1.41 | 1.45 | 1.40 |                                                | < 0.01                                   |                                       |
| Poland (a)         |      |      |      | 1.43 | 1.43 |                                                |                                          | N/A                                   |
| Portugal (c)       | 1.45 | 1.46 | 1.64 | 1.55 | 1.57 |                                                | 0.03                                     |                                       |
| Belglum            | 2.02 | 1.71 | 1.67 | 1.60 | 1.66 | 1                                              | -0.08                                    |                                       |
| Sweden             | 1.60 | 1.65 | 1.67 | 1.57 | 1.67 |                                                | 0.01                                     |                                       |
| Slovenia           | 1.66 | 1.56 | 1.55 | 1.61 | 1.68 |                                                | 0.01                                     |                                       |
| Luxembourg         | 2.02 | 2.02 | 2.00 | 1.81 | 1.78 |                                                | -0.07                                    | <                                     |
| Estonia            | 1.86 | 2.11 | 1.91 | 1.94 | 1.82 |                                                | -0.03                                    |                                       |
| Croatia            | 1.88 | 1.98 | 1.80 | 1.86 | 1.91 |                                                | -0.01                                    |                                       |
| Ireland            | 1.79 | 1.76 | 1.79 | 1.66 | 1.91 |                                                | 0.01                                     |                                       |
| EU/EEA             | 1.96 | 1.98 | 2.05 | 2.01 | 2.05 |                                                | 0.02                                     |                                       |
| Greece             | 2.18 | 2.08 | 2.00 | 2.11 | 2.14 |                                                | -0.01                                    |                                       |
| France             | 2.12 | 2.12 | 2.17 | 2.20 | 2.18 |                                                | 0.02                                     |                                       |
| Latvia             | 2.39 | 2.27 | 2.30 | 2.25 | 2.24 | -                                              | -0.03                                    |                                       |
| Denmark            | 1.74 | 1.78 | 2.02 | 2.13 | 2.34 |                                                | 0.16                                     | >                                     |
| Slovakia (a)       |      | 2.02 | 2.30 | 2.47 | 2.40 |                                                |                                          | N/A                                   |
| Italy              | 2.32 | 2.46 | 2.23 | 2.22 | 2.43 |                                                | < 0.01                                   |                                       |
| Finland (b)        | 3.09 | 2.79 | 2.77 | 2.64 | 2.50 |                                                | -0.13                                    | <                                     |
| Lithuania (a)      |      | 2.39 | 2.38 | 2.35 | 2.54 |                                                |                                          | N/A                                   |
| United Kingdom (a) |      |      | 2.45 | 2.59 | 2.55 |                                                |                                          | N/A                                   |
| Malta              | 1.67 | 1.44 | 1.75 | 2.18 | 2.86 |                                                | 0.31                                     | >                                     |

#### Overarching benchmarks

SAC data show trends in higher level (national, european, global) statistics

ECDC 2016

Antibiotic
Stewardship
Programs

Change structures

Change processes

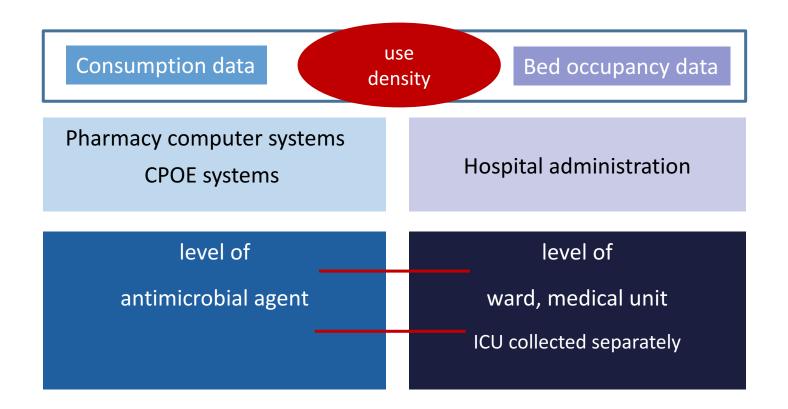
Optimise outcomes



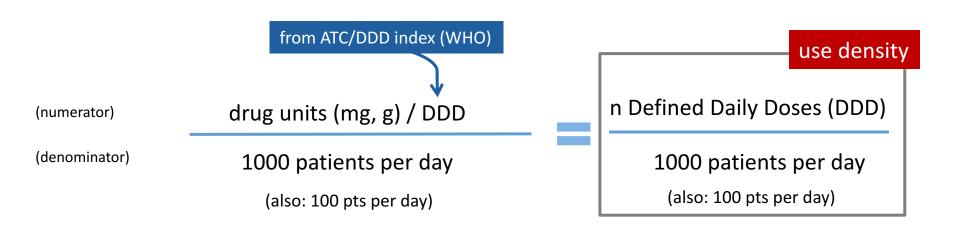
Surveillance of Antibiotic Consumption

Measures




SAC is the "speedometer" for antimicrobial use

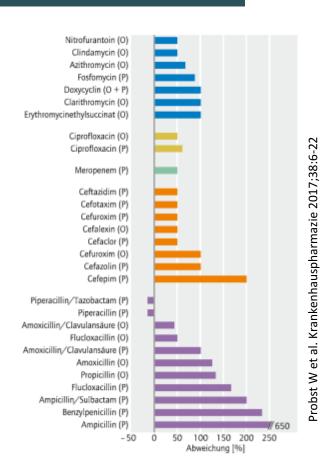



### What are we looking for?



How many
of what
in which area
in a certain time period?




#### Data are calculated as a rate, expressing the "density" of antimicrobial use:



#### Defined Daily Doses (DDD) or Recommended Daily Doses (RDD)?

# DDD are less than doses administrated in some antiinfectives

- overestimation of consumption
- definition of recommended daily doses (RDD) on a national level
- RDD are not globally accepted



#### Metrics in pediatrics?



- DDD/RDD are not defined for pediatric patients
- Pediatric patients should be excluded from SAC
- A system for pediatrics is "under construction" (days of therapy?)

Consumption data

use density

Bed occupancy data

Pharmacy computer systems

CPOE systems

Hospital administration

level of antimicrobial agent

level of ward, medical unit

Aggregation

antimicrobial groups and classes

using the ATC classification system (or other system)

medical department ICU / normal wards whole institution (hospital)

#### ATC classification system

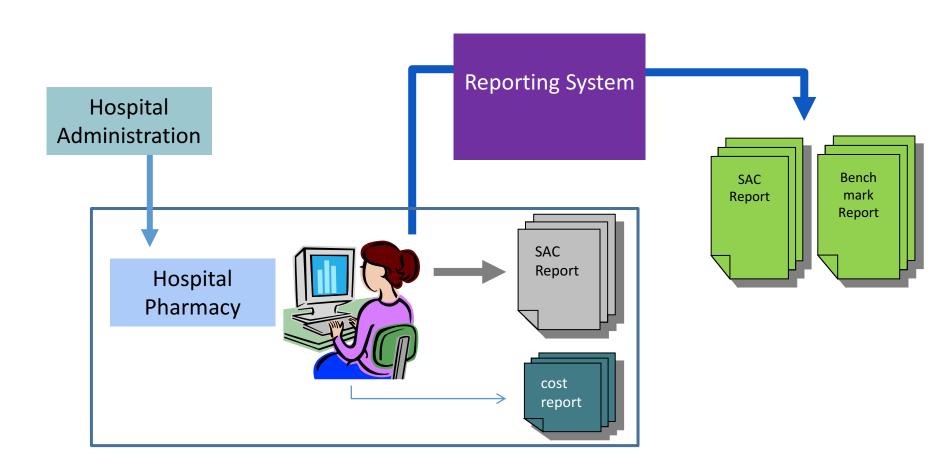
| Level | ATC code                                     |                                    |   |   |    |  |  |  |  |  |
|-------|----------------------------------------------|------------------------------------|---|---|----|--|--|--|--|--|
| 1     | J ANTIINFECTIVES FOR SYSTEMIC USE            |                                    |   |   |    |  |  |  |  |  |
| 2     | J01 ANTIBACTERIALS FOR SYSTEMIC USE          |                                    |   |   |    |  |  |  |  |  |
| 3     | JO1C BETA-LACTAM ANTIBACTERIALS, PENICILLINS |                                    |   |   |    |  |  |  |  |  |
| 4     | J01CA                                        | Penicillins with extended spectrum |   |   |    |  |  |  |  |  |
|       | Name DDD Unit                                |                                    |   |   |    |  |  |  |  |  |
| 5     | J01CA01                                      | ampicillin                         | 2 | g | iv |  |  |  |  |  |
| 5     | J01CA04                                      | amoxicillin                        | 1 | g | ро |  |  |  |  |  |
| 5     | J01CR21                                      | ampicillin/sulbactam               | 6 | g | iv |  |  |  |  |  |

### It's not all about collecting data...

- Do we have to change empiric treatment?
- Are there changes or trends over time?
- Are there hot spots of inadequate use?
- Do resistance data correlate with consumption data?
- How do we compare in the benchmark?

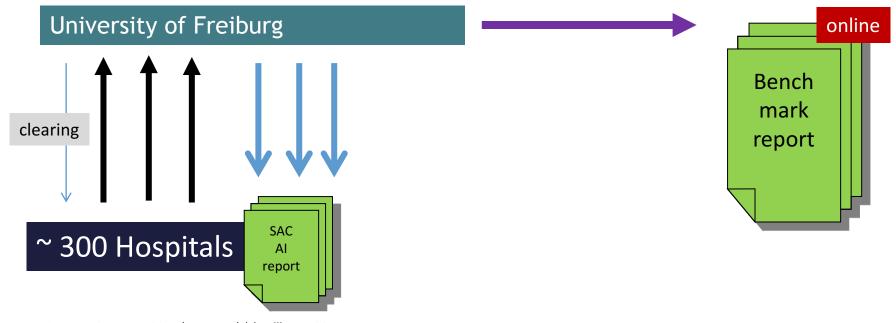
...we have to answer questions

Document
Analyze
Interpret
Define ABS interventions
Communicate


german infection prevention act

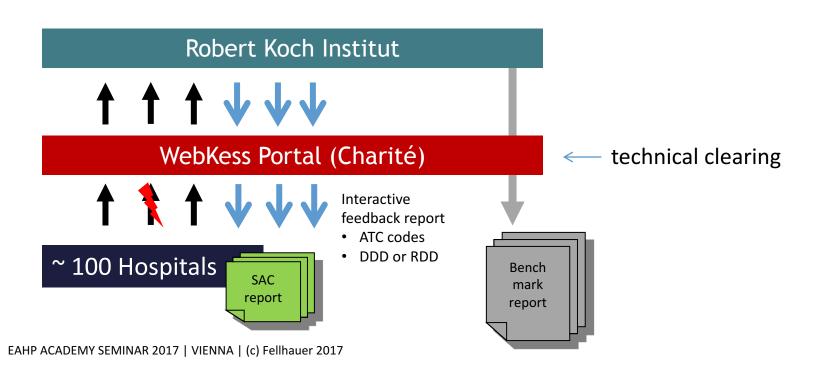


## Do it yourself OR reporting system?



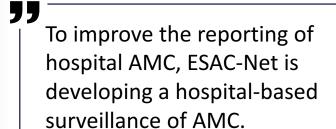






#### Surveillance Systems at the national level (Germany)

ADKA-if-DGI Projekt (based at Freiburg University)

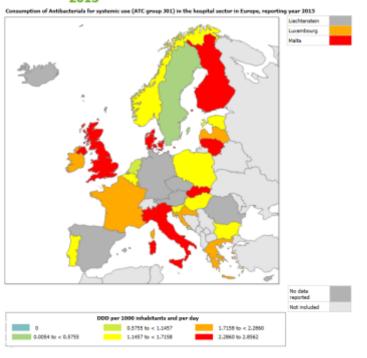



#### Surveillance Systems at the national level (Germany)

Antibiotika Verbrauchssurveillance (AVS) based at Robert Koch Institut



#### Surveillance Systems at the european level: ESAC-Net






#### Surveillance Systems at the european level

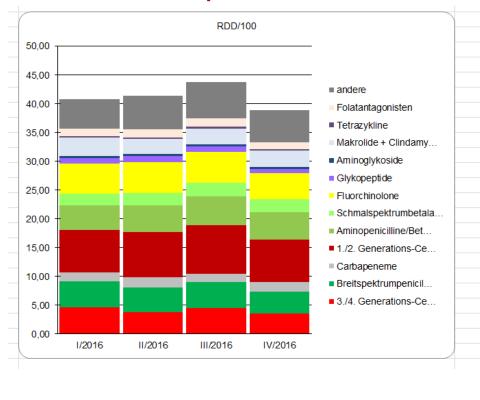


Geographical distribution of the consumption of Antibacterials for systemic use (ATC group J01) in the hospital sector in Europe, reporting year 2015



Beware of methodological differences ...

- ambulant/hospital?
- non prescription ABX?

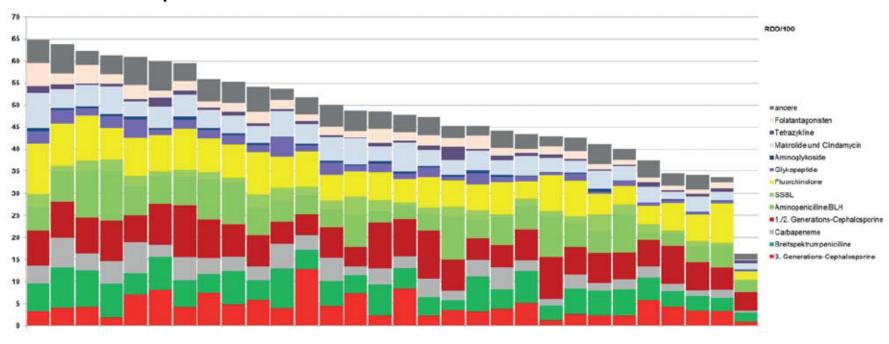

#### feedback reports

#### ADKA-if-DGI Projekt (based at Freiburg University)

| KH gesamt*                       |            | 1/20   | 16         | II/2     | 016         | 111/2    | 2016        | IV/2       | 016     | 1/20                                                       | 16      | 11/2     | 016     | 111/20 | )16     | IV/2     | 016     |
|----------------------------------|------------|--------|------------|----------|-------------|----------|-------------|------------|---------|------------------------------------------------------------|---------|----------|---------|--------|---------|----------|---------|
| Pflegetage (PT) und Fallzahler   | ı (FZ)     | 76.334 | 13.775     | 76.783   | 13.853      | 74.522   | 13.648      | 74.686     | 13.629  | 76.334                                                     | 13.775  | 76.783   | 13.853  | 74.522 | 13.648  | 74.686   | 13.629  |
|                                  |            |        |            |          |             |          |             |            |         |                                                            |         |          |         |        |         |          |         |
|                                  |            | Men    | ge in "Red | ommende  | ed Daily Do | ses[RDD] | " absolut u | nd pro 100 | ) PT    | Menge in "Defined Daily Doses[DDD]" absolut und pro 100 PT |         |          |         |        |         |          |         |
|                                  |            | RDD    | /100       | RDD      | /100        | RDD      | /100        | RDD        | /100    | DDD                                                        | /100    | DDD      | /100    | DDD    | /100    | DDD      | /100    |
| Antiinfektiva GESAMT             |            | 33.183 | 43,47      | 33.578   | 43,73       | 35.212   | 47,25       | 31.096     | 41,64   | 44.072                                                     | 57,74   | 44.900   | 58,48   | 47.074 | 63,17   | 42.087   | 56,35   |
| Antimykotika systemisch GESAMT   |            | 1.095  | 1,44       | 845      | 1,10        | 1.201    | 1,61        | 1.039      | 1,39    | 1.835                                                      | 2,40    | 1.346    | 1,75    | 1.884  | 2,53    | 1.706    | 2,28    |
| Virustatika GESAMT               |            | 440    | 0,58       | 621      | 0,81        | 692      |             | 503        | 0,67    | 358                                                        | 0,47    | 530      | 0,69    | 542    | 0,73    | 406      | 0,54    |
| Tuberkulostatika GESAMT          |            | 552    | 0,72       | 337      | 0,44        | 701      |             | 531        | 0,71    | 723                                                        | 0,95    | 522      | 0,68    | 922    | 1,24    | 803      | 1,07    |
| Antiparasitäre Med. GESAMT       |            | 0      | 0,00       | 0        | 0,00        | 0        | 0,00        | 0          | 0,00    | 0                                                          | 0,00    | 0        | 0,00    | 0      | 0,00    | 0        | 0,00    |
| Antibiotika GESAMT               |            | 31.095 | 40,74      | 31.775   | 41,38       | 32.617   | 43,77       | 29.023     | 38,86   | 41.156                                                     | 53,92   | 42.502   | 55,35   | 43.726 | 58,68   | 39.172   | 52,45   |
|                                  |            |        |            |          |             |          |             |            |         |                                                            |         |          |         |        |         |          |         |
| Betalaktame                      |            | 18.602 | 24,37      | 18.824   | 24,52       | 19.558   | 26,24       | 17.522     | 23,46   | 26.037                                                     | 34,11   | 27.130   | 35,33   | 27.881 | 37,41   | 25.109   | 33,62   |
| Breitspektrumbetalaktame         |            | 8.183  | 10,72      | 7.528    | 9,80        | 7.786    | 10,45       | 6.767      | 9,06    | 8.395                                                      | 11,00   | 7.738    | 10,08   | 7.936  | 10,65   | 7.042    | 9,43    |
| 3./4. Generations-Cephalosporia  | ne         | 3.530  | 4,62       | 2.926    | 3,81        | 3.361    |             | 2.658      | 3,56    |                                                            | 4,74    | 2.977    | 3,88    | 3.457  | 4,64    | 2.701    | 3,62    |
| Breitspektrumpenicilline         |            | 3.407  | 4,46       | 3.318    | 4,32        | 3.348    | 4,49        | 2.835      | 3,80    | 2.920                                                      | 3,83    | 2.844    | 3,70    | 2.870  | 3,85    | 2.430    | 3,25    |
| Carbapeneme                      |            | 1.246  | 1,63       | 1.284    | 1,67        | 1.077    | 1,44        | 1.274      | 1,71    | 1.855                                                      | 2,43    | 1.917    | 2,50    | 1.610  | 2,16    | 1.912    | 2,56    |
| Intermediärspektrumbetalaktame   |            | 8.854  | 11,60      | 9.676    | 12,60       | 10.010   |             | 9.017      | 12,07   | 12.712                                                     | 16,65   | 13.912   | 18,12   | 14.429 | 19,36   | 12.702   | 17,01   |
| 1./2. Generations-Cephalosporing | ne         | 5.639  | 7,39       | 6.110    | 7,96        | 6.313    |             | 5.454      | 7,30    | 9.497                                                      | 12,44   | 10.346   | 13,47   | 10.733 | 14,40   | 9.139    | 12,24   |
| Aminopenicilline/Betalaktamase   | einhibitor | 3.215  | 4,21       | 3.566    | 4,64        | 3.697    | 4,96        | 3.563      | 4,77    | 3.215                                                      | 4,21    | 3.566    | 4,64    | 3.697  | 4,96    | 3.563    | 4,77    |
| Schmalspektrumbetalaktame        |            | 1.565  | 2,05       | 1.621    | 2,11        | 1.762    |             | 1.737      | 2,33    | 4.930                                                      | 6,46    | 5.481    | 7,14    | 5.515  | 7,40    | 5.365    | 7,18    |
| Fluorchinolone                   |            | 4.012  | 5,26       | 4.078    | 5,31        | 4.001    |             | 3.357      | 4,49    |                                                            | 6,37    | 5.062    | 6,59    | 5.222  | 7,01    | 4.423    | 5,92    |
| Glykopeptide                     |            | 758    | 0,99       | 809      | 1,05        | 722      |             | 522        | 0,70    | 758                                                        | 0,99    | 809      | 1,05    | 745    | 1,00    | 524      | 0,70    |
| Aminoglykoside                   |            | 221    | 0,29       | 285      | 0,37        | 277      | 0,37        | 249        | 0,33    | 295                                                        | 0,39    | 380      | 0,50    | 369    | 0,50    | 332      | 0,44    |
| Sonstige Antibiotika             |            | 7.502  | 9,83       | 7.779    | 10,13       | 8.060    | 10,82       | 7.374      | 9,87    | 9.204                                                      | 12,06   | 9.121    | 11,88   | 9.510  | 12,76   | 8.785    | 11,76   |
| Makrolide + Clindamycin          |            | 2.494  | 3,27       | 1.983    | 2,58        | 1.997    | 2,68        | 2.133      | 2,86    | 4.015                                                      | 5,26    | 3.079    | 4,01    | 2.995  | 4,02    | 3.255    | 4,36    |
| Tetrazykline                     |            | 131    | 0,17       | 246      | 0,32        | 279      |             | 234        | 0,31    | 223                                                        | 0,29    | 407      | 0,53    | 520    | 0,70    | 452      | 0,61    |
| Folatantagonisten                |            | 1.029  | 1,35       | 1.097    | 1,43        | 1.124    |             | 851        | 1,14    | 1.029                                                      | 1,35    | 1.097    | 1,43    | 1.124  | 1,51    | 851      | 1,14    |
| Cotrimoxazol                     |            | 1.029  | 1,35       | 1.097    | 1,43        | 1.124    |             | 851        | 1,14    | 1.029                                                      | 1,35    | 1.097    | 1,43    | 1.124  | 1,51    | 851      | 1,14    |
| andere                           |            | 3.849  | 5,04       | 4.454    | 5,80        | 4.660    | 6,25        | 4.156      | 5,56    | 3.936                                                      | 5,16    | 4.538    | 5,91    | 4.872  | 6,54    | 4.226    | 5,66    |
| Linezolid                        |            | 297    | 0,39       | 396      | 0,52        | 520      |             | 283        | 0,38    | 297                                                        | 0,39    | 396      | 0,52    | 520    | 0,70    | 283      | 0,38    |
| Metronidazol                     |            | 3.208  | 4,20       | 3.739    | 4,87        | 3.563    | 4,78        | 3.516      | 4,71    | 3.208                                                      | 4,20    | 3.739    | 4,87    | 3.563  | 4,78    | 3.516    | 4,71    |
|                                  |            |        |            |          |             |          |             |            |         |                                                            |         |          |         |        |         |          |         |
| Top 15 Antiinfektiva             |            |        |            |          |             |          |             |            |         | gend sortie                                                |         |          |         |        |         |          |         |
|                                  |            | I/2013 | II/2013    | III/2013 | IV/2013     | I/2014   | II/2014     | III/2014   | IV/2014 | 1/2015                                                     | II/2015 | III/2015 | IV/2015 | I/2016 | II/2016 | III/2016 | IV/2016 |
| Cefuroxim                        | iv         | 0      | 0          | 0        | 0           | 0        | 0           | 0          | 0       | 0                                                          | 0       | 0        | 0       | 3.473  | 3.690   | 3.690    | 3.476   |
| Sultamicillin                    | ро         | 0      | 0          | 0        | 0           | 0        | 0           | 0          | 0       | -                                                          | 0       | 0        | 0       | 2.474  | 2.915   | 2.978    | 2.902   |
| Piperacillin + Tazobactam        | iv         | 0      | 0          | 0        | 0           | 0        | 0           | 0          | 0       | _                                                          | 0       | 0        | 0       | 3.373  | 3.313   | 3.350    | 2.833   |
| Ceftriaxon                       | iv         | 0      | 0          | 0        | 0           | 0        | 0           | 0          | 0       |                                                            | 0       | 0        | 0       | 3.350  | 2.825   | 3.176    | 2.574   |
| Metronidazol                     | po         | 0      | 0          | 0        | 0           | 0        | 0           | 0          | 0       | 0                                                          | 0       | 0        | 0       | 1.788  | 2.120   | 1.739    | 2.040   |

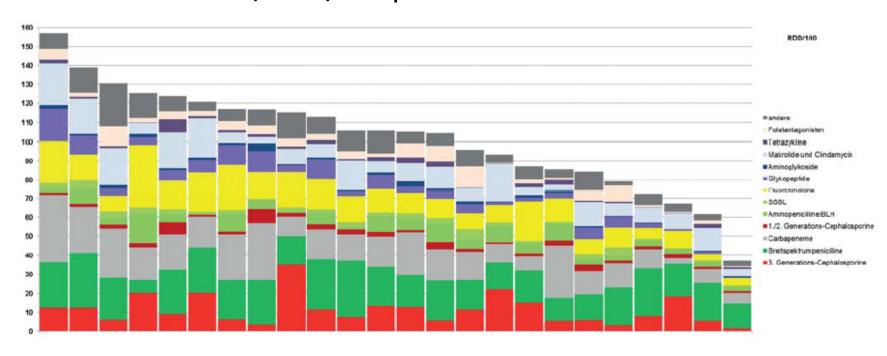
| KH gesamt*                              | 1/20               | 16         | II/20  | 016    |  |  |
|-----------------------------------------|--------------------|------------|--------|--------|--|--|
| Pflegetage (PT) und Fallzahlen (FZ)     | 76 <del>.334</del> | 13.775     | 70.703 | 13.853 |  |  |
|                                         |                    |            |        |        |  |  |
|                                         | Men                | d Daily Do |        |        |  |  |
|                                         | RDD                | /100       | RDD    | /100   |  |  |
| Antiinfektiva GESAMT                    | 33.183             | 43,47      | 33.578 | 43,73  |  |  |
| Antimykotika systemisch GESAMT          | 1.095              | 1,44       | 845    | 1,10   |  |  |
| Virustatika GESAMT                      | 440                | 0,58       | 621    | 0,81   |  |  |
| Tuberkulostatika GESAMT                 | 552                | 0,72       | 337    | 0,44   |  |  |
| Antiparasitäre Med. GESAMT              | 0                  | 0.00       | 0      | 0.00   |  |  |
| Antibiotika GESAMT                      | 31.095             | 40,74      | 31.775 | 41,38  |  |  |
|                                         |                    |            |        |        |  |  |
| Betalaktame                             | 18.602             | 24,37      | 18.824 | 24,52  |  |  |
| Breitspektrumbetalaktame                | 8.183              | 10,72      | 7.528  | 9,80   |  |  |
| 3./4. Generations-Cephalosporine        | 3.530              | 4,62       | 2.926  | 3,81   |  |  |
| Breitspektrumpenicilline                | 3.407              | 4,46       | 3.318  | 4,32   |  |  |
| Carbapeneme                             | 1.246              | 1,63       | 1.284  | 1,67   |  |  |
| Intermediärspektrumbetalaktame          | 8.854              | 11,60      | 9.676  | 12,60  |  |  |
| 1./2. Generations-Cephalosporine        | 5.639              | 7,39       | 6.110  | 7,96   |  |  |
| Aminopenicilline/Betalaktamaseinhibitor | 3.215              | 4,21       | 3.566  | 4,64   |  |  |
| Schmalspektrumbetalaktame               | 1.565              | 2,05       | 1.621  | 2,11   |  |  |
|                                         | 4 0 4 0            | 5.00       | 4.070  |        |  |  |

#### Data from the **hospital level**:




|                      | 1/2016 | 11/2016 | III/2016 | IV/2016 |
|----------------------|--------|---------|----------|---------|
| 3./4. Generations-Ce | 4,62   | 3,81    | 4,51     | 3,56    |
| Breitspektrumpenicil | 4,46   | 4,32    | 4,49     | 3,80    |
| Carbapeneme          | 1,63   | 1,67    | 1,44     | 1,71    |
| 1./2. Generations-Ce | 7,39   | 7,96    | 8,47     | 7,30    |
| Aminopenicilline/Bet | 4,21   | 4,64    | 4,96     | 4,77    |
| Schmalspektrumbetala | 2,05   | 2,11    | 2,36     | 2,33    |
| Fluorchinolone       | 5,26   | 5,31    | 5,37     | 4,49    |
| Gіукореріїde         | 0,99   | 1,00    | 0,97     | 0,70    |
| Aminoglykoside       | 0,29   | 0,37    | 0,37     | 0,33    |
| Makrolide + Clindamy | 3,27   | 2,58    | 2,68     | 2,86    |
| Tetrazykline         | 0,17   | 0,32    | 0,37     | 0,31    |
| Folatantagonisten    | 1,35   | 1,43    | 1,51     | 1,14    |
| andere               | 5,04   | 5,80    | 6,25     | 5,56    |
|                      |        |         |          |         |

How many of what has been used in which area, in a certain time period?


#### **Benchmark report**

#### Whole hospitals > 800 beds



#### **Benchmark report**

#### Internal medicine / ICU / hospitals > 800 beds



#### Internistische Intensivmedizin: Mittlerer Antibiotikaverbrauch in Tagesdosen pro 100 Pflegetage (RDD/100).

|                                         | <4                              | 00 Betten  | 400-   | 800 Betten               | > 800 Betten |                          |  |
|-----------------------------------------|---------------------------------|------------|--------|--------------------------|--------------|--------------------------|--|
|                                         | Median Interquartil-<br>bereich |            | Median | Interquartil-<br>bereich | Median       | Interquartil-<br>bereich |  |
| 3./4. Generations-Cephalosporine        | 7,0                             | 4,0 - 11,6 | 6,5    | 4,5 - 10,5               | 11,2         | 5,8 - 15,0               |  |
| Breitspektrum-Penicilline               | 14,6                            | 8,5 - 22,2 | 13,2   | 10,3 - 18,7              | 20,4         | 15,8 - 23,7              |  |
| Carbapeneme                             | 7,9                             | 3,9 - 14,9 | 8,2    | 6,4 - 10,2               | 16,0         | 10,5 - 23,6              |  |
| 1./2. Generations-Cephalosporine        | 3,6                             | 2,0 - 5,9  | 1,4    | 0,9 - 2,7                | 1,8          | 1,3 - 2,9                |  |
| Aminopenicillin/BLI-Kombinationen*      | 5,2                             | 2,6 - 8,7  | 6,5    | 3,1 - 10,0               | 4,9          | 2,7 - 8,4                |  |
| Schmalspektrum-Penicilline <sup>#</sup> | 1,4                             | 0,5 - 2,2  | 1,7    | 1,4 - 3,1                | 2,2          | 1,1 - 3,2                |  |
| Fluorchinolone                          | 10,7                            | 6,6 - 14,7 | 10,8   | 5,7 - 14,0               | 13,2         | 9,3 - 19,0               |  |
| Glykopeptide incl. Daptomycin           | 1,9                             | 0,7 - 2,4  | 2,3    | 1,0 - 3,0                | 4,7          | 2,3 - 7,1                |  |
| Aminoglykoside                          | 0,3                             | 0,1 - 0,6  | 0,5    | 0,3 - 0,7                | 1,2          | 0,6 - 1,5                |  |
| Makrolide und Clindamycin               | 9,4                             | 5,8 - 12,7 | 7,2    | 5,5 - 9,5                | 8,2          | 6,0 - 18,3               |  |
| Tetrazykline                            | 0,5                             | 0,1 - 1,1  | 0,5    | 0,4 - 1,1                | 1,1          | 0,9 - 2,0                |  |
| Folatantagonisten/Sulfonamide           | 1,3                             | 0,7 - 2,2  | 1,8    | 0,8 - 3,9                | 3,7          | 1,9 - 5,9                |  |
| andere                                  | 6,2                             | 3,5 - 8,0  | 5,2    | <b>1</b> ,7 - 7,3        | 8,0          | 4,7 - 10,7               |  |
| darunter Metronidazol                   | 3,7                             | 2,6 - 5,1  | 2,7    | 1,3 - 4,8                | 2,7          | 1,9 - 4,4                |  |
| t Di la Datalahtamasa dahihitan         |                                 |            |        |                          |              |                          |  |

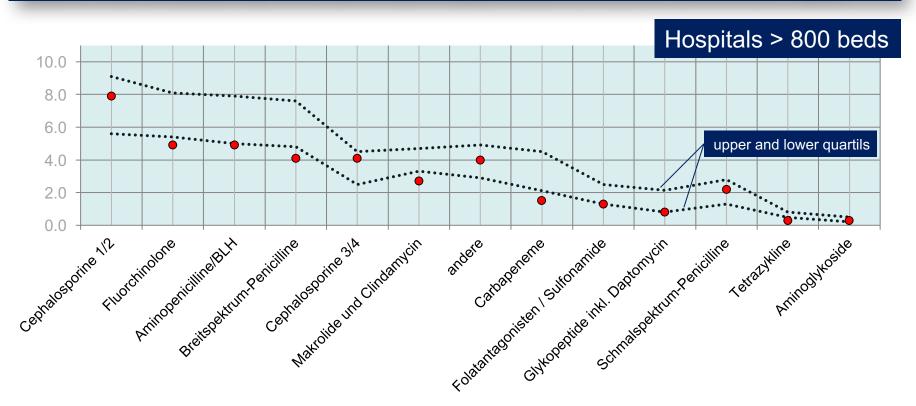
<sup>\*</sup>BLI=Betalaktamase-Inhibitor

<sup>\*</sup>Penicillin, Ampicillin, Amoxicillin, Flucloxacillin

# What time period?






# ... at least annually, preferably quarterly.

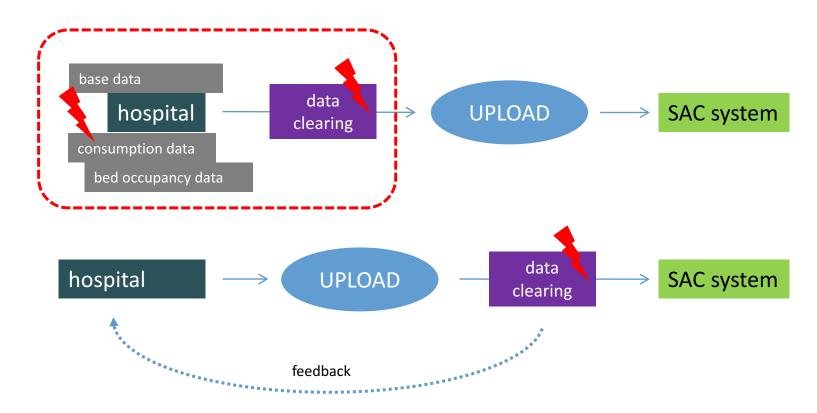
German S3-Guideline

... continuously.

#### How to visualize consumption data

(Data in RDD/100 pts per day from Krankenhaus-Vergleichsreport 2015/2016, ADKA-if-DGI Projekt)




#### **CONSUMPTION SURVEILLANCE METHODS:**

#### HOW TO COLLECT AND REPORT DATA

#### **HOW TO AVOID COMMON PITFALLS**



## ... data quality is critical!



### ... data quality is critical!

### **Systemic** vs. local antimicrobials:

- Vancomycin?
- Colistin, Tobramycin inhalation?

**Dose reduction** is not considered

Drug shortages: Update your base data!

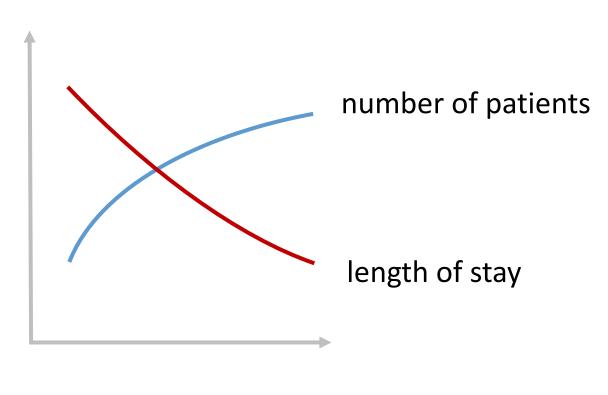
Reorganisation of wards: Update your base data!

## ... mixed specialty (combined) wards

- How many is it a relevant part of the hospital?
- Is a "fixed split" of antibiotic consumption possible?
- CDC-NHSN-80%-rule?

You have to make some decisions ...

hospital


what time period?

DDD or RDD?

DIY or SAC system?

SAC system

commercial or non commercial?



100 pts
get 1 DDD
over 10 days
=
100 DDD/1000 pt per day

200 pts
get 1 DDD
over 5 days
=
200 DDD/1000 pt per day

### SAC is just a tool: Use it in the right way...!

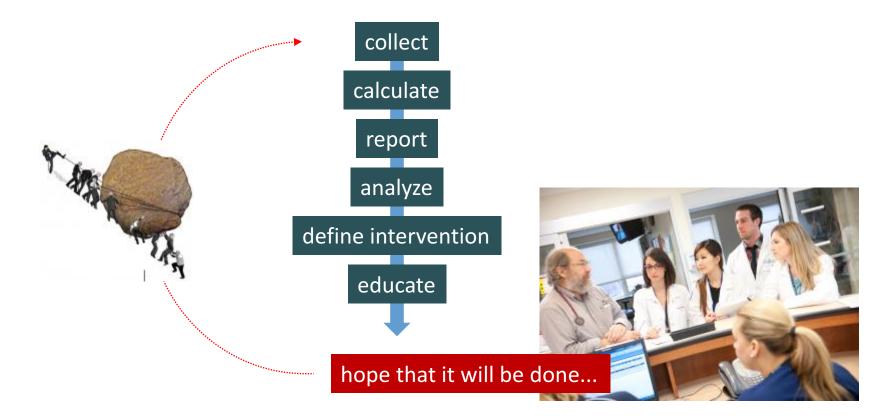
Local trend vs. benchmark

methodology? representative?

**Quantity** is not **Quality of therapy** 

**Consumption** is not **Resistance** 

**Digging deeper: With Point Prevalence Studies!** 


## We should know

# what we can learn from SAC data what we can NOT learn ...



It's not more than a speedometer ...

## It's not all about consumption data ...



## SUMMARY



## Six key steps

## to Surveillance of Antibiotic Consumption

- 1 Look at your data
- 2 Standardisation is key
- 3 Join a national, non commercial surveillance system
- 4 Keep your base data up to date
- 5 Look at your local trends first
- 6 Don't overestimate the benchmarks

## SUMMARY (handout)

### Surveillance of Antimicrobial Consumption in Hospitals: Summary

© Fellhauer 2017

### WHY

#### consumption should be monitored

- Surveillance of Antimicrobial Consumption (SAC) is the "speedometer" for antimicrobial use
- SAC is a requirement for antimicrobial stewardship programs
- SAC is recommended in evidence based guidelines for antimicrobial stewardship (DELLIT, BARLAM, deWITH)
- SAC shows trends in antimicrobial use at the local, national and global level
- · SAC may trigger changes of empiric treatment
- SAC may demonstrate trends over time
- SAC may detect hot spots of inadequate use of antimicrobials

#### HOW data should be COLLECTED

- Consumption data is collected at the product level from pharmacy computer systems or electronic prescribing sytems
- Bed occupancy data are provided by the hospital administration
- Data should be collected at the level of wards or medical units
- Intensive Care Units should be considered separately
- SAC data should be calculated in Defined Daily Doses (DDD) or Recommended Daily Doses (RDD) as the numerator and 1000 patients per day or 100 patients per day as the denominator
- · Results are a measure for density of antimicrobial use
- There is no well accepted measure for pediatrics so far

#### HOW data should be REPORTED

- Use data should be reported on a regular basis (at least once a year, preferably quartely).
- Use data should be reported and aggregated to the level of the hospital and medical department, but also be available to the level of the ward
- Use data should be reported and aggregated according to ATC codes (or other systems, if established on a national level)
- DIY is an option, but well established surveillance systems on the national level are strongly recommended
- Benchmarking data may provide additional information, but should be interpreted with caution
- The cost of antiinfective therapy should also be reported (local level only)

### 6 key steps to SAC in hospitals

- 1 Look at your data
- 2 Standardisation is key
- 3 Join a national, non commercial surveillance system
- 4 Keep your base data up to date
- 5 Look at your local trends first
- 6 Don't overestimate the benchmarks

#### Pitfalls

- · Metrics are not standardized on an international level
- Using DDD is much accepted, but results in an overestimation of consumption for some antiinfectives
- Mixed specialty wards may be responsible for relevant inaccuracy of results
- . Master data must be kept up to date

- . Dose reduction in renal failure may cause inaccuracy
- · Pediatric departments should be excluded
- · Local trends are more important than benchmarks
- International benchmarks should be handled with caution for methodological differences
- Data quality is critical, clearing is recommended

### **Questions and Answers:**

RDD/1000 patients per day is a globally accepted measure for antibiotic consumption:



There is not yet a well accepted measure for antibiotic consumption in pediatrics:



Consumption data should be collected at least monthly:



## THANK YOU ©