PHARMACEUTICAL DECISION SUPPORT SYSTEM FOR SALT ACETAMINOPHEN USE: RAISING AWARENESS AMONG CARDIOVASCULAR PATIENTS

M Ade¹, A Huguet², C Gilles³, A Dony⁴, E Dufay⁴, B Demore³, A Potier⁴

Pharmacists in: ¹Centre Psychiatrique de Nancy & CH Ravenel ²CH Saint Nicolas de Port et CH 3H Santé ³CHRU Nancy, ⁴ CH Lunéville, France arnaud.potier@ghemm.fr

Background and importance

High quantities of salt (1g) in Effervescent Acetaminophen Formulations (EAF) (either 500 mg or 1,000 mg) ->

EAF regimen: salt intake up to 8 g/day

Recommended salt among cardiovascular patients: 5 g max/day EAFs: lead to cardiovascular adverse events (Zeng C et al, 2022)

EAFs: to avoid among cardiovascular patients

Aim and objectives

prescribed EAF To detect among cardiovascular patients by using a Pharmaceutical decision support system (PDSS)

Materials and methods

Prospective study from April 2020 to August 2022 (28 months) in 2 facilities – 1,600 beds

PDSS detection operates on Pharmaclass® (Keenturtle) using:

- real-time patient data
- 1 dedicated Pharmaceutical algorithms (PA) for identifying situation of EAF prescriptions in 2 versions
 - o 1st from April 2020
 - o 2nd from May 2022 with more elements to detect cardiovascular comorbidities

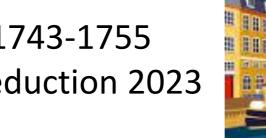
Alert analysis by pharmacists leads to Pharmaceutical interventions to stop EAFs prescriptions

Collected data: patient's cardiovascular diseases, EAF consumption and analyzed alerts Data analysis: Excel® (Microsoft Office suite)

Results

- Most patients (245 out of 258) have at least one cardiovascular disease: 225 high blood pressure, 34 cardiac insufficiency and 167 ischemic pathologies
- Salt intake between EAFs prescription and pharmacist's intervention was:
 - 2,910 grams over 987 days of treatment at general hospital
 - ❖ 624 grams over 361 days of treatment at university hospital

Importance to stop EAF is highlighted


	1 st version		2 nd version	
Data collection period	28 months			
	24 months		4 months	
Analyzed alerts	159		124	
Technical false positives	13	8 %	29	23 %
Situations not classified as Drug-related problem	39	25 %	33	27 %
Drug-related problems requiring Pharmaceutical	101	64 %	35	28 %
interventions				
Accepted pharmacist's intervention	50	50 %	20	57 %
EAFs on demand	120	76 %	46	37 %

Conclusion and relevance

Using a PDSS reveals the salt intake through EAF among cardiovascular patients.

Improved detection by 2nd version underlines the importance of PA modeling process. However, a rise in false positives emerges.

PDSS reinforce pharmacists and physicians learning and ability to act for patient safety

