

Neonatal vancomycin: exploring levels at NHS Tayside, Scotland CP-118

K. Petrie^a, C. O'Brien^a, S. Bhushan^b, A. Tonna^c

^aPharmacy Department, Ninewells Hospital, Dundee, Scotland, ^bNeonatal Unit, Ninewells Hospital, Dundee, Scotland, ^cSchool of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, Scotland

Correspondence: k.e.cathcart@rgu.ac.uk or cathcart_k@hotmail.com

BACKGROUND

- Vancomycin is used to treat secondary Gram-positive infections
- Dosing recommendations at NHS Tayside are as per the British National Formulary for Children (BNFc) (see table below)
- BNFc target vancomycin trough level is 10-15mg/L¹
- Low vancomycin levels are associated with treatment failure and high levels are associated with an increased risk of adverse effects

Corrected Gestational Age (CGA) (weeks)	Dosage (mg/kg)	Frequency
< 29	15	24 hourly
29 - 35	15	12 hourly
> 35	15	8 hourly

RESULTS

- Comparison of pharmacokinetic models:
- Of the published models considered, Grimsley and Thomson found serum creatinine impacts clearance whereas the other models found CGA²⁻⁵
- How well do the published population pharmacokinetic models predict observed trough levels for Tayside (using the individuals' actual dose received)?

OBJECTIVES

- Review neonatal vancomycin dosing and pharmacokinetic modelling literature
- Audit Tayside vancomycin target trough achievement (based on BNFc dosing)
- Predict vancomycin levels for a Tayside sample using published pharmacokinetic models and compare predicted levels to actual levels
- Formulate recommendations for neonatal vancomycin dosing

METHOD

Sampling

- Retrospective data collection from medical notes
- Inclusion criteria:
- All babies within the neonatal unit that had at least one vancomycin level analysed
- Exclusion criteria:
- None, vancomycin dosing protocol is used for all neonates within the unit

Data collection

- Patient identifiers were obtained of all neonates that had a vancomycin level analysed from 1 January 2009 to 30 June 2012
- Identifiers were used to link blood levels to medical notes and medical notes were

	Thomson ²	al. ³	al. ⁺	
Mean	11.7	-23.8	-43.5	-128
percentage	(-5.14 - 28.5)	(-42.3 - 18.5)	(-60.926.2)	(-15898.6)
prediction error				
(100x(O-P)/O)		Bias – is it	correct on a	verage?
(95% CI)				
Mean unsigned	51.16	64.9	63.7	136
percentage	Precision -	on gvergge	how close is	it to the obs
prediction error		un average		

O is observed level P is predicted level

- Grimsley and Thomson model is the best at predicting observed trough levels for the Tayside sample but it still contains significant prediction errors²
- The linear regressions showed that the percentage prediction errors within all models was significantly associated with serum creatinine

obtained and reviewed

Data analysis

- Data was analysed using Excel (2010) and STATA (version 12.0)
- Patient characteristics e.g. gestational age, CGA, dosing weight, serum creatinine
- Clinical audit of percentage of initial levels within target range
- Comparison of neonatal population pharmacokinetic models using signed and unsigned mean percentage prediction error
- Multiple linear regression of percentage prediction error from pharmacokinetic models against patient characteristics

RESULTS

Patient characteristics n=83:

Clinical Feature	Median	Range
Gestational Age (weeks+days)	28	23+1 – 41+3
Postnatal Age (days)	12	2 – 187
Corrected Gestational Age (gestational age + postnatal age) (weeks+days)	30+3	23+6 – 52+4
Dosing Weight (kg)	1.12	0.56 – 4.7
Serum Creatinine (µmol/L)	42	17 – 139

Dosing recommendations:

- The Grimsley and Thomson model was adjusted to account for the relationship between percentage prediction error and serum creatinine²
- Adjusted model was used to formulate a new dosing strategy with a 15mg/kg dose

Serum Creatinine (µmol/L)	Dosage (mg/kg)	Frequency
<40	15	8 hourly
40 - 80	15	12 hourly
> 80	15	Take a level 12hours post initial dose. Dose according to level with pharmacy advice if required.

DISCUSSION

 No published literature evaluating trough level achievement using BNFc dosing Limitations:

Actual dosing was not reviewed to ensure that neonates were dosed correctly

The accuracy of the documentation and administration by staff could not be verified

CONCLUSION

 Current dosing based on BNFc is inadequate and is likely to be associated with treatment failure

Clinical audit of percentage within target range:

- All evidence in this study suggests that serum creatinine is a better predictor of neonatal vancomycin clearance than CGA
- The new dosing strategy derived needs to be prospectively audited to measure potential improvements in target levels
- Significant uncertainty still exists around neonatal clearance and there is a need to better understand the causes of variation amongst neonates

REFERENCES

- 1. Paediatric Formulary Committee. *BNF for Children* 2010-2011. London: BMJ Group, Pharmaceutical Press, and RCPCH Publications; 2010.
- 2. Grimsley, C. and Thomson, A. Pharmacokinetics and dose requirements of vancomycin in neonates. *Archives of Disease in Childhood Fetal and Neonatal Edition*. 1999; 81: F221-F227.
- 3. de Hoog, M., Mouton, J. and van den Anker, J. New dosing strategies for antibacterial agents in the neonate. Seminars in Fetal and Neonatal Medicine. 2005; 10: 185-194.
- 4. Seay, R., Brundage, R., Jensen, P., Schilling, C. and Edgren, B., 1994. Population pharmacokinetics of vancomycin in neonates. *Clinical Pharmacology and Therapeutics*. 1994: 56(2); 169-75.
- 5. Anderson, B., Allegaert, K., van den Anker, J., Cossey, V. and Holford, N. Vancomycin pharmacokinetics in preterm neonates and the prediction of adult clearance. *British Journal of Clinical Pharmacology*. 2006; 63(1): 75-84.