Cost-effectiveness analysis of meropenem dose optimisation in critical patients Clínica Universidad de Navarra Abstract: 4CPS-045

ATC code: J01

Background and Importance

In critical patients (CP), meropenem dose adjustment following pharmacokinetic/pharmacodynamic monitoring (TDM) presents a clinical benefit. An economic analysis could facilitate its use.

Materials and methods

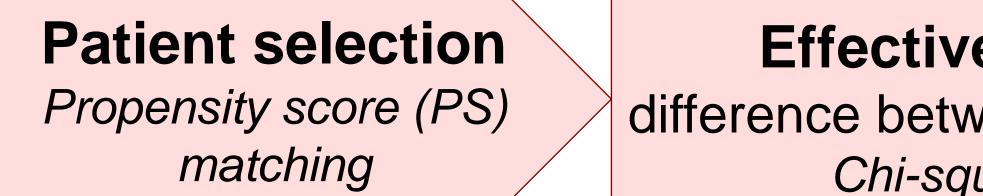
Aim and Objective

To conduct a cost-effectiveness analysis of meropenem TDM in CP versus standard dose (SD) according to the package insert recommendations.

Study design: Naturalistic retrospective observational cohort study. **Setting:** University Hospital Patients: CP receiving meropenem from May/2011 to Dec-2017. **M** COHORT A _____ patients with meropenem TDM Two cohorts: M COHORT B patients with SD meropenem

Main effectiveness

variable: % of patients with a reduction of at least 80% in


Costs included:

- Drug (Meropenem)
 - Adverse Drug Reactions (ADR) Material for compounding TDM

the procalcitonin value at the end of meropenem treatment with regard to the maximum value during meropenem treatment.

- Hospitalizations
- Re-entries
- Time (for compounding, administration, surveillance).

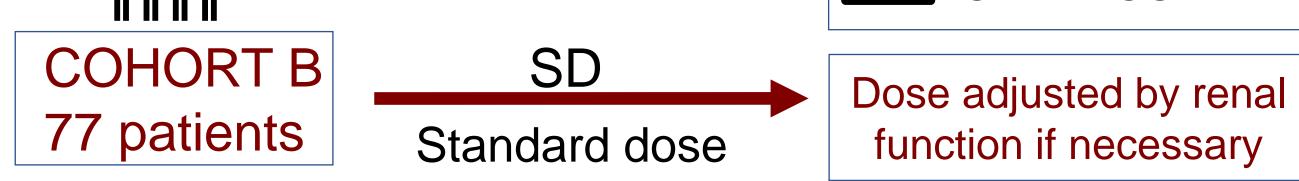
Study phases (and statistical analysis**)**:

Effectiveness difference between cohorts Chi-square

Costs difference between cohorts Boostrap

Cost-effectiveness

Deterministic and probabilistic sensitivity analysis


Results

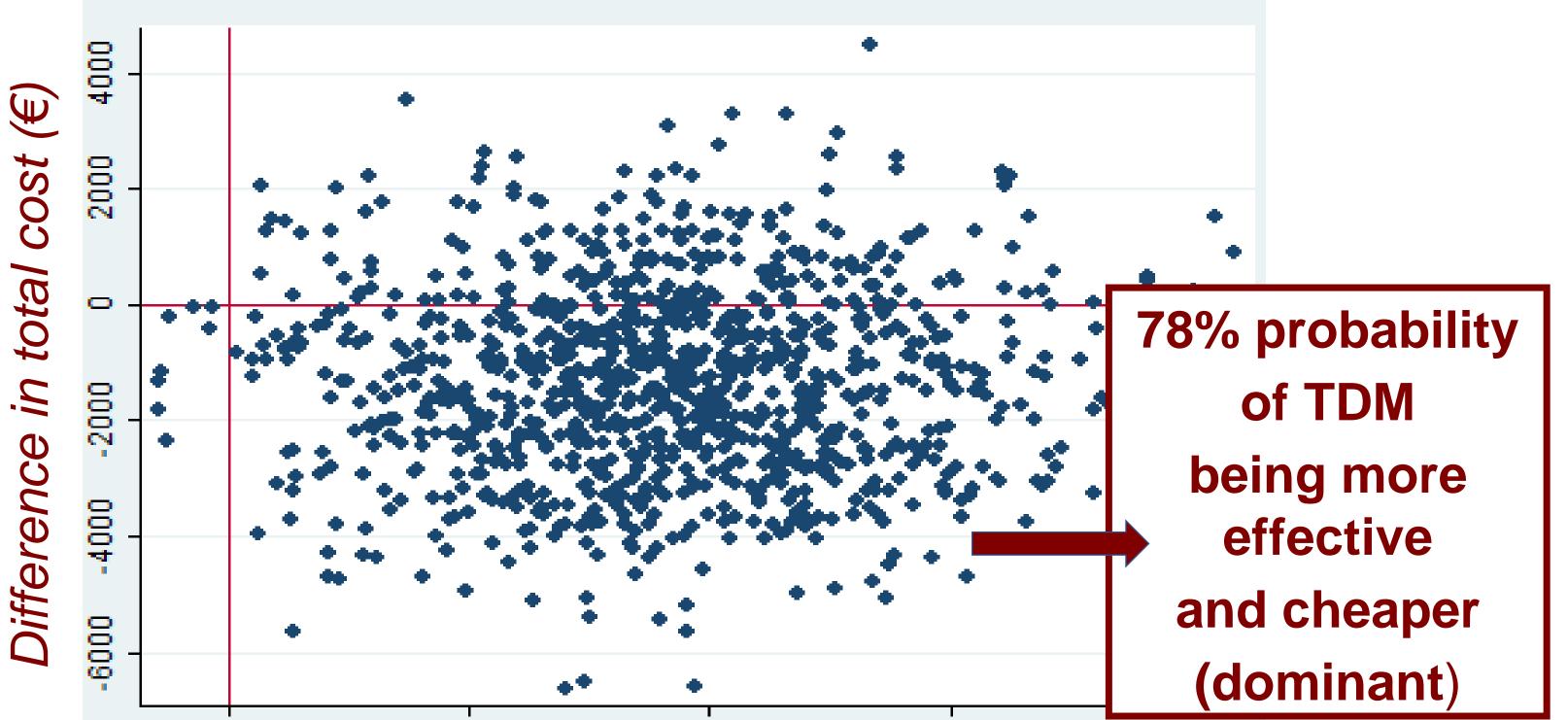
154 patients included (from 173 recruited) after PS matching

Table 1:Effectiveness

	TDM	51 patients (66.2%) required meropenem
COHORT A 77 patients	Therapeutic	dose change
M M	drug monitoring	90.2% of them OVERDOSED

Reduction ≥ 80% in	Cohort A (n=77) 55 (71 %)	Cohort B (n=77) 41 (53 %)	Difference (95%CI) 18% (3-33)	P value 0.020*
procalcitonin, n (%)				
% procalcitonine reduction median (P25-P75)	93 (77-97)	85 (69-95)		0.004**
Procalcitonin <0.5 ng/mL at the end of meropenem treatment n (%)	49 (64 %)	32 (42 %)	22% (7-37)	0.006*

Safety: No significant differences in ADR between both cohorts.


Table 2: Cost (€) per patient (basal analysis)

	COHORT A	COHORT B		
	COST (€)	COST (€)	Difference (€)*	P value*
	mean (min-max)	mean (min-max)	mean (95%CI)	
1. Meropenem	364 (86-1,091)	427 (110-1,140)	-62 (-116; -4)	0.027
2. Preparation material	122(29-330)	134 (55-354)	-12 (-29; 4)	0.147
3. Monitoring	47 (46-92)	0		
4. Nurse time	222 (52-666)	260 (67-696)	-38 (-71; -4)	0.026
5. ADR	347 (0-1,176)	324 (0-882)		
6. ICU stay	8,912	10,325	-1,412	0.363
	(750-74,250)	(1,500-53,250)	(-4,455; 1,631)	
TOTAL (1-6)	10,016	11,470	-1,454	0.369
	(1,602-75,473)	(2,251-54,387)	(-4,627; 1,720)	

Estimated by Bootstrap. min=minimum, max=maximum; CI= confidence interval, p=probability

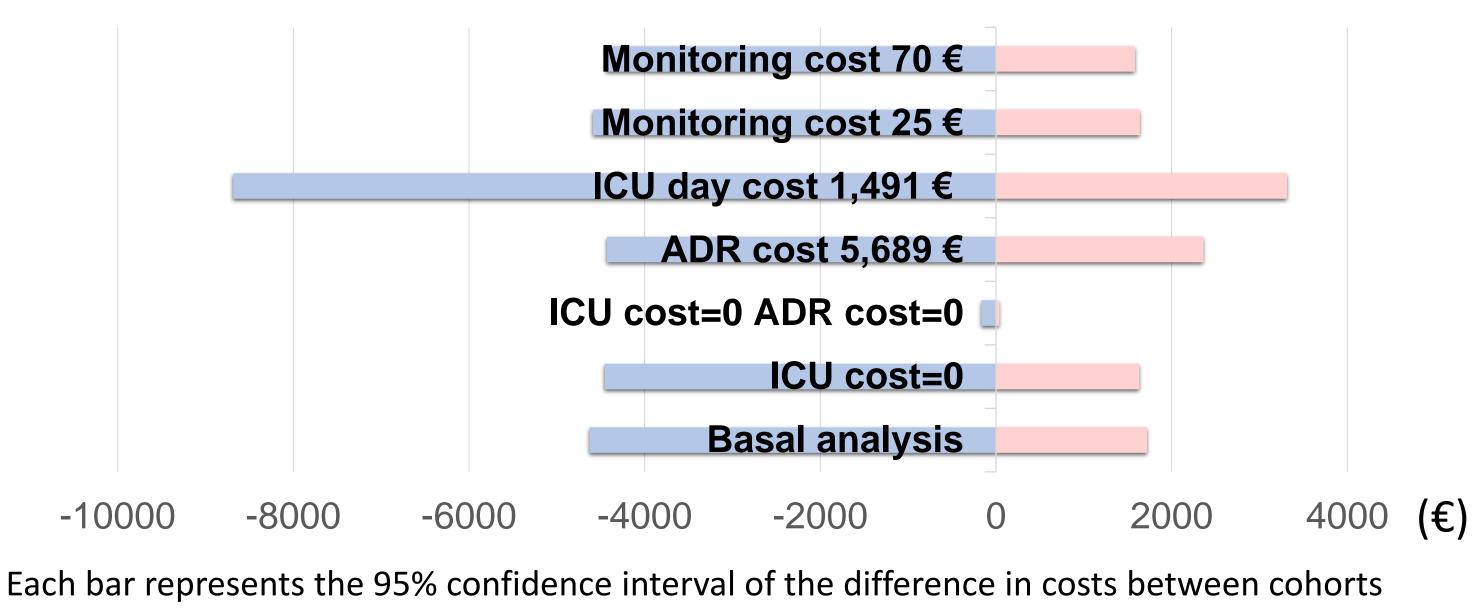

*Chi² ** Wilkoxon test. P25:percentil 25, P75:percentil 75, n:number of patients, CI95 95%:confidence interval

Figure 1: Cost-effectiveness: Probabilistic sensitivity analysis.

Figure 2: Difference in costs: Deterministic sensitivity analyses

Influence of changing different unit costs on the 95%CI difference in costs (€) between the cohorts. In basal analysis unit costs are: monitoring 46€, Day in ICU 750€, ADR 294€.

Difference in % with procalcitonin reduction >80%

30

Conclusion and relevance

10

adjustment Meropenem dose following PK/PD criteria İS more effective, with similar safety and lower costs, than dosing according to package insert recommendations.

These results support the use of Meropenem TDM in critical patients care.

40