REAL-WORLD EXPERIENCE IN HEMOPHILLIA B PATIENTS AFTER SWITCHING TO FIX EXTENDED HALF LIFE USING PHARMACOKINETIC POBLACIONAL SOFTWARE AND MONOCOMPARTIMENTAL MODEL

J.C. Juárez-Giménez¹, O. Benítez-Hidalgo² J.A. Romero-Garrido³, C. Mateos-Salillas³, S. González-Piñeiro⁴, J.B.Montoro-Ronsano¹

¹Pharmacy Service. Vall d'Hebron University Hospital, Barcelona, Spain. ²Hemophillia Unit. Vall d'Hebron University Hospital, Barcelona, Spain. ³ Pharmacy Service. La Paz University Hospital. Madrid, Spain. ⁴ Pharmacy Service. Da Coruña University Hospital. A Coruña, Spain.

Background and Importance

Extended half-life recombinant Factor IX concentrates (rFIX-EHL) have improved the feasibility of the prophylaxis program and the quality of life of the treated Hemophillia B (HB) patients, since they **dramatically increase the dosing interval and reduce the number of rFIX injections** The efficiency of a pharmacokinetic-based tailored prophylaxis-dosing schedule versus standard dosing (DS) is compared, in HB, treated with two rFIX-EHL. Pharmacokinetics parameters were calculated.

Population model

Materials and methods

- ✓ Observational, analytical, prospective, multicentre study, involving HB patients, from three different hospitals, being treated with rFIX-EHL linked to albumin (rFIX-FP) or to fragment crystallizable (rFIX-Fc).
- ✓ Demographic and clinical data, and DS and dosing interval (DI) and actual FIX trough levels were recorded.
- Pharmacokinetic characterization was performed following both a population (WAPPS-HEMO) and a linear one-compartment (monocompartimental) approach. For each approach and rFIX preparation, an estimation of the time to the target trough (5 IU FIX/dL) was made. Statistical analysis was performed by means of the Student-Fischer t-test.

6 patients
rFIX-Fc
Mean age= 49 years,
mean weight= 86 kg)

			model		WAPPS-HEMO	
Factor IX	N	Standard dosing (DS)	Individual Tailored DI; Days with Cmin>5%	UI/day for T5	Individual Tailored DI; Days with Cmin>5%	UI/day for T5
rFIX-FP	9	3222 UI (1716) / 11,9 days (4,4)	13,6 (5,1)*	240 (136)	15,0 (5,7)+	217 (115)
rFIXFc	6	4333 UI (606) / 14 days (0,0)	8,6 (1,2)**	508 (66)	10,2 (2,5)++	450 (129)
Total patients	15	3667 UI (1460) / 12,7 days (3,5)	11,6 (4,7)	348 (175)	13,1 (4,8)	310 (165)

One-compartment

Table 1. Results how means $(\pm \partial)$ T: time , T5: Time with Cmin > 5% *11,9 days vs 13,6 days; p=0,40** 14 days vs 8,6 days; p<0,001. *11,9 days vs 15,0; p=0,12 ** 14 days vs 10,2 days; p=0,012.

	Kel (h-1)	C0 (UI/dL)	Vd (mL/kg)	Cl (mL/h/kg)	T _{1/2} (h)
X Mono $(\pm \partial)$	0,0080	54,01	117,29	0,906	91,4
	(0,0016)	(24,27)	(51,09)	(0,405)	(19,0)
XWAPPS	0,0054	71,27	108,81	0,229	135,7
(±∂)	(0,0012)	(21,24)	(26,82)	(0,267)	(32,8)
Р	0,002	0,001	0,442	0,001	0,002

rFIX-FP

(Mean age, 33 years,

Mean weight 60 kg)

Table 2 . One-compartment model vs WAPPS-HEMO for **rFIX-FP**. Results how means (X) and standard deviation $(\pm \partial)$

	Kel (h-1)	C0 (UI/dL)	Vd (mL/kg)	Cl (mL/h/kg)	T _{1/2} (h)
<i>X</i> Mono	0,0278	35,46	161,63	1,59	71,9
(±∂)	(0,0452)	(11,12)	(50,88)	(0,52)	(13,5)
XWAPPS	0,0051	125,60	217,41	0,12	148,6
(±∂)	(0,0009)	(19,72)	(22,53)	(0,03)	(24,4)
P	> 0,001	0,267	0,041	0,001	0,001

Tabla 3: One-compartment model vs WAPPS-HEMO for FIXFc. Results how means (X) and standard deviation $(\pm \partial)$

Conclusion and relevance

*The efficiency of rFIX-EHL treatment following a pharmacokinetic-based tailored prophylaxis-dosing schedule versus DS, in HB patients, is significantly higher. Depending on the commercial preparation, rFIX-FP or rFIX-Fc, the daily-adjusted dose, for a 5 IU FIX/dL trough target, ranges between 217 – 240 IU/day for rFIX-FP, or 450 – 508 IU/day for rFIXFc, according to the two pharmacokinetic approaches (individually and population based).

*There are differences between CI and t ½ parameters when there were evaluated using the one-compartment model. rFIX-FP half life was longer (91h) versus rFIXFc half life (71.9h). No differences between rFIX-FP and rFIXFc was reported using the pharmacokinetic population software (WAPPS-HEMO)

Aim and objectives