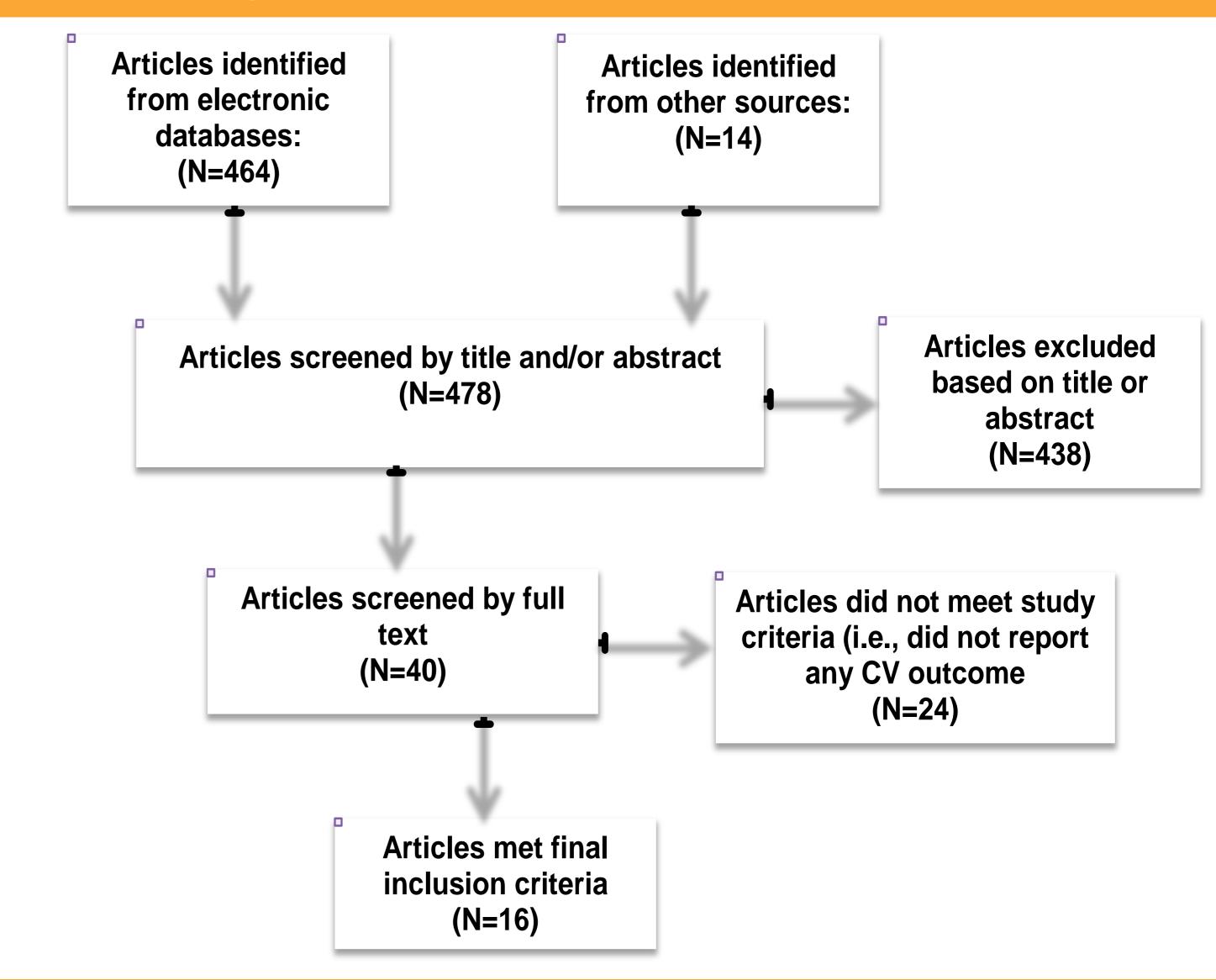




# IMPACT OF SODIUM-GLUCOSE CO-TRANSPORTER 2 INHIBITORS ON CARDIOVASCULAR OUTCOMES IN PATIENTS WITH TYPE 2 DIABETES MELLITUS: A SYSTEMATIC REVIEW (CP-013)


## Ziad Nasr<sup>1,2</sup>, Fatemeh Jalali<sup>1,3</sup>, Dalia Ahmed<sup>1,4</sup>, Kyle John Wilby<sup>1,5</sup>

<sup>1</sup>College of Pharmacy, Qatar University, Doha-Qatar <sup>2</sup>BSc(Pharm)., PharmD., BCPS.; <sup>3</sup>BSc(Pharm)., PharmD. Candidate; <sup>4</sup>BSc(Pharm).; <sup>5</sup>BSP., ACPR., PharmD.

## Background

- Type 2 Diabetes mellitus (T2DM) and its complications cause a substantial burden of disease on societies worldwide and its prevalence is increasing significantly in every country, which is mainly due to lifestyle changes
- It is estimated that around 65% of people with T2DM will die as a result of cardiovascular (CV) complications
- Sodium-glucose co-transporter 2 (SGLT2) inhibitors are a novel class of antidiabetics proven to reduce blood pressure, blood glucose and body weight

#### Figure 1. Flow diagram for study selection and inclusion



- Lately, the food and drug administration (FDA) has mandated all new anti-diabetic medications to provide evidence that they do not increase risk of CV outcomes (e.g. myocardial infarction (MI), stroke, cardiac death etc.)
- However, the long-term CV safety implication of these agents remain unclear

## **Study Objective**

To provide a comprehensive summary and critical analysis of available literature pertaining to CV safety (MI, stroke, angina and CV related death) of SGLT2 inhibitors (canagliflozin, dapagliglozin and empagliflozin) in patients with T2DM

## Methods

#### Design

Systematic review

#### Databases searched

- EMBASE and MEDLINE
- Search terms
  - Included: "SGLT2 inhibitors", "Canagliflozin", "Dapagliflozin", "Empagliflozin", "cardiovascular", "safety", "myocardial infarction", "stroke", "cardiovascular death"
- Study inclusion criteria
  - Randomized controlled trials (RCTs) assessing CV safety of SGLT2 inhibitors compared with placebo or anti-diabetic medications

#### Table 1. Study characteristics and results

| Study Reference            | Design/<br>Duration      | Sample<br>Size | Intervention (mg per day)                                                                                                                | CV Outcomes                                                          |  |
|----------------------------|--------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--|
| Lewin et al. (2015)        | R, DB, MC, AC/52<br>wk.  |                | EMPA 10 or 25 mg combined with<br>linagliptin 5 mg; linagliptin 5 mg alone;<br>EMPA 10 mg alone; or EMPA 25 mg<br>alone                  | CV death: EMPA arm;<br>(N=1)                                         |  |
| DeFronzo et al. (2015)     | R, DB, MC, AC/52<br>wk.  | N=686          | EMPA 10 or 25 mg combined with<br>linagliptin 5 mg; linagliptin 5 mg alone;<br>EMPA 10 mg alone; or EMPA 25 mg<br>alone as add-on to MTF | CV death: EMPA arm;<br>(N=1)                                         |  |
| Ferrannini et al. (2013)   | R, PC/12 wk.             | N=408          | EMPA 5, 10 or 25 mg OD; or PC; or open-label MTF                                                                                         | CV events: EMPA arm;<br>(N=2 MI); MTF arm;<br>(N=1 angina)*          |  |
| Kovacs et al. (2014)       | R, PC/24 wk.             | N=498          | EMPA 10 or 25 mg OD; or PC as add-on to pioglitazone $\pm$ MTF                                                                           | CV death: EMPA arm;<br>(N=1); PC arm; (N=1)*                         |  |
| Haring et al. (2013)       | R, DB, PC/24 wk.         | N=669          | EMPA 10 or 25 mg OD; or PC as add-on treatment to MTF + sulfonylurea                                                                     | CV death: EMPA arm;<br>(N=1)*                                        |  |
| Strojek et al. (2011)      | R, DB, PC, MC/24<br>wk.  | N=597          | DAPA 2.5, 5, or 20 mg OD; or PC as<br>add-on to open-label Glimepiride 4<br>mg/day                                                       | CV events: DAPA arm;<br>(N=1 stroke)<br>CV death: DAPA arm;<br>(N=1) |  |
| Strojek et al. (2014)      | R, PC/48 wk.             | N=519          | ling/day                                                                                                                                 | CV death: DAPA arm;<br>(N=1)                                         |  |
| Nauck et al. (2014)        | R, DB, AC/104<br>wk.     | N=814          | DAPA 10 mg or GLP 20 mg OD                                                                                                               | CV death: GLP arm;<br>(N=1)                                          |  |
| Wilding et al. (2012)      | R, PC, MC/48 wk.         | N=808          | DAPA 2.5, 5, or 10 mg OD; or PC                                                                                                          | CV death: DAPA arm;<br>(N=3)                                         |  |
| Bailey et al. (2010)       | R, DB, PC,<br>MC/102 wk. | N=546          | DAPA 2.5, 5, or 10 mg OD; or PC                                                                                                          | CV events: DAPA arm;<br>(N=2 MI, N=3 others)*                        |  |
| Leiter et al. (2014)       | R, DB, PC/24 wk.         | N=964          | DAPA 10 mg OD; or PC                                                                                                                     | CV death: DAPA arm;<br>(N=2); placebo arm;<br>(N=1)                  |  |
| Kohan et al. (2014)        | R, DB, PC,<br>MC/104 wk. | N=252          | DAPA 5 or 10 mg OD; or PC                                                                                                                | CV death: DAPA arm;<br>(N=2); placebo arm;<br>(N=3)                  |  |
| Del Prato et al. (2015)    | R, DB/208 wk.            | N=814          | DAPA 2.5, 5 or 10 mg Od; or GLP 5, 10<br>or 20 mg OD, combined with open-label<br>MTF                                                    | CV death: DAPA/MTF<br>arm; (N=2); GLP/MTF<br>arm; (N=5)              |  |
| Bode et al. (2015)         | R, DB, PC/104<br>wk.     | N=714          | CANA100 or 300 mg; or PC OD                                                                                                              | CV death: CANA arm;<br>(N=1)*                                        |  |
| Schernthaner et al. (2013) | R, DB, AC/52 wk.         | N=755          | CANA 300 mg or sitagliptin 100 mg OD                                                                                                     | CV death: CANA arm;<br>(N=2)*                                        |  |

- Risk of Bias Assessment tool (Cochrane Collaboration)
- Any study that had ≥ 1 high risk of bias or ≥ 2 unclear risks of bias was deemed to be of unclear quality

#### Results

- The results of literature search are shown in Figure 1.
- Total of 16 RCTs were included after full-text review
- All studies reported at least one of the pre-defined outcomes (CV death, MI, or stroke)
- A summary of study characteristics and results are given in Table 1.
  - Nineteen CV deaths were reported in SGLT2 inhibitors groups versus 10 CV deaths in placebo or other comparator arms; numerically higher in the dapagliflozin arms
  - The number of CV events was numerically higher in SGLT2 inhibitors groups than in other arms (4 cases of non-fatal MI, 1 case of stroke and 3 other CV events)
- Risk of bias assessment showed mixed results, with overall quality assessments deemed unclear for 4 of the 16 eligible studies (25.0%)

### **Discussion and Limitations**

 Findings in this study are only hypothesis generating given that none of these outcomes were part of the primary or secondary endpoints of almost all the R: randomized, DB: double-blinded, PC: placebo-controlled, AC: active-controlled, MC: multicenter, wk.: weeks., OD: once daily, EMPA: empagliflozin, DAPA: dapagliflozin, CANA: canagliflozin, CV: cardiovascular, GLP: glipizide, MTF: metformin

\*Not related to study drug as reported by authors

#### Table 2. Risk of bias assessment

| Study                       | Sequence<br>Generation | Allocation<br>Concealment | Blinding  | Incomplete<br>Outcome Data | Selective<br>Outcome<br>Reporting | Other*    | Overall<br>Quality |
|-----------------------------|------------------------|---------------------------|-----------|----------------------------|-----------------------------------|-----------|--------------------|
| Schernthaner et al. (2013)  | Low risk               | Low risk                  | Low risk  | Low risk                   | Low risk                          | Unclear   | Good               |
| Bode et al.<br>(2015)       | Unclear                | Unclear                   | Low risk  | Low risk                   | Unclear                           | Low risk  | Unclear            |
| Bailey et al<br>(2010)      | Low risk               | Low risk                  | Low risk  | Low risk                   | Low risk                          | Low risk  | Good               |
| Strojek et al.<br>(2011)    | Low risk               | Unclear                   | Low risk  | Unclear                    | Low risk                          | Unclear   | Good               |
| Leiter et al.<br>(2014)     | Low risk               | Low risk                  | Unclear   | Low risk                   | Low risk                          | Unclear   | Good               |
| Kohan et al.<br>(2014)      | Unclear                | Unclear                   | Low risk  | Low risk                   | Unclear                           | Low risk  | Unclear            |
| Strojek et al.<br>(2014)    | Low risk               | Unclear                   | Low risk  | Low risk                   | Low risk                          | Low risk  | Good               |
| Wilding et al.<br>(2012)    | Low risk               | Unclear                   | Low risk  | Low risk                   | Low risk                          | Unclear   | Good               |
| Del Prato et al.<br>(2015)  | Low risk               | Low risk                  | Low risk  | Unclear                    | Low risk                          | High risk | Unclear            |
| Nauck et al.<br>(2014)      | Low risk               | Low risk                  | Unclear   | Low risk                   | Low risk                          | Low risk  | Good               |
| Ferrannini et al.<br>(2013) | Low risk               | Unclear                   | High risk | Low risk                   | Low risk                          | Low risk  | Unclear            |
| Kovacs et al.<br>(2014)     | Low risk               | Low risk                  | Low risk  | Low risk                   | Low risk                          | Low risk  | Good               |
| Lewin et al.<br>(2015)      | Low risk               | Low risk                  | Low risk  | Low risk                   | Low risk                          | Low risk  | Good               |
| DeFronzo et al.<br>(2015)   | Low risk               | Low risk                  | Low risk  | Low risk                   | Low risk                          | Low risk  | Good               |
| Zimman et al.<br>(2015)     | Low risk               | Low risk                  | Low risk  | Low risk                   | Low risk                          | Low risk  | Good               |

included studies (15/16) and statistical evaluations were lacking

- Only 1 study (Zimman et al. 2015) assessed CV safety of empagliflozin as a primary endpoint when compared to placebo and showed lower CV-related deaths in the empagliflozin group with no significant between-group differences in the rates of other CV events such as stroke or MI
- We could not pool results and meta-analyze them as they would be weighted almost entirely for Zimman et al.
- Most studies were found to be well designed and at low risk of bias
  - Majority of studies did not have power to detect differences between groups in terms of CV outcomes
  - Relatively short follow-up period may have not allowed for detection of CV outcomes

## **Conclusions and Impact on clinical practice**

- CV outcomes do occur in patients taking SGLT2 inhibitors yet the clinical significance remains unclear
- Pharmacists should proactively monitor and report CV outcomes occurring in patients on SGLT2 inhibitors
- Future research is warranted to determine if safety profiles are drug and/or dose related or could be considered a class effect as a whole before they become widely adopted in clinical practice

\*Other sources of bias: Based on study design or confounding factors (e.g. variation in baseline characteristics)

## Acknowledgements

 No funding was provided to assist in performing the review and all authors have no potential conflicts of interest to declare