

C.J. MORENO PEREZ¹, A. COMES ESCODA¹, A. CASALDÀLIGA TORRECILLAS¹, N. MAS MALAGARRIGA¹, J.L. VINENT GENESTAR¹, H. COLOM CODINA². ¹SANT JOAN DE DEU, PHARMACY, ESPLUGUES DE LLOBREGAT, SPAIN. ²UNIVERSITAT DE BARCELONA, PHARMACOKINETICS, BARCELONA, SPAIN.

EXTERNAL VALIDATION OF POPULATION PHARMACOKINETIC MODELS OF HIGH DOSING METHOTREXATE IN PEDIATRIC PATIENTS WITH ACUTE LYMPHOBLASTIC LEUKEMIA

Background and importance

High-dose methotrexate (HDMTX) as a 24h infusion is essential to treat ALL

Monitoring methotrexate plasma concentrations must be performed to prevent toxicities

Aim and objectives

Evaluate the predictive ability of two methotrexate pharmacokinetic models in pediatric oncology

Material and Methods

2 pharmacokinetic models: A & B

Variables collected at 24-48h post-infusion (high risk patients 2-48h):

✓ Individual prediction concentrations (Cipred)

Individual prediction error = ((Cipred – PCmtx)/PCmtx)*100

✓ Methotrexate plasma concentrations (PCmtx)

✓ Creatinine levels

Median of individual prediction error (MDIPE): Accuracy

Absolute median of individual prediction error (MAIPE): Precision

Goal: MDIPE ≤±10% & MAIPE ≤25%

Results

560 PCmtx from 57 patients with ALL (aged 2-17) received HDMTX 1-5 g/m²

MODEL A

MODEL B

24h

MDIPE = 6.7% (95%CI: 3.767-9.633)

MAIPE = 8.7%

42h

MDIPE = -2.2% (95%CI: -8.608-4.208) **MAIPE** = 7.5%

MDIPE = 31.1% (95%CI: 22.139-40.061) X

MAIPE = 31.1%

MDIPE = 6.3% (95%CI: -0.771-13.371) < **MAIPE** = 9.7%

Conclusion and Relevance

Model A's predictive ability is higher at all times.

Model A exhibited high accuracy and precision.

Model A proved to be superior and more reliable.

