

ASAN

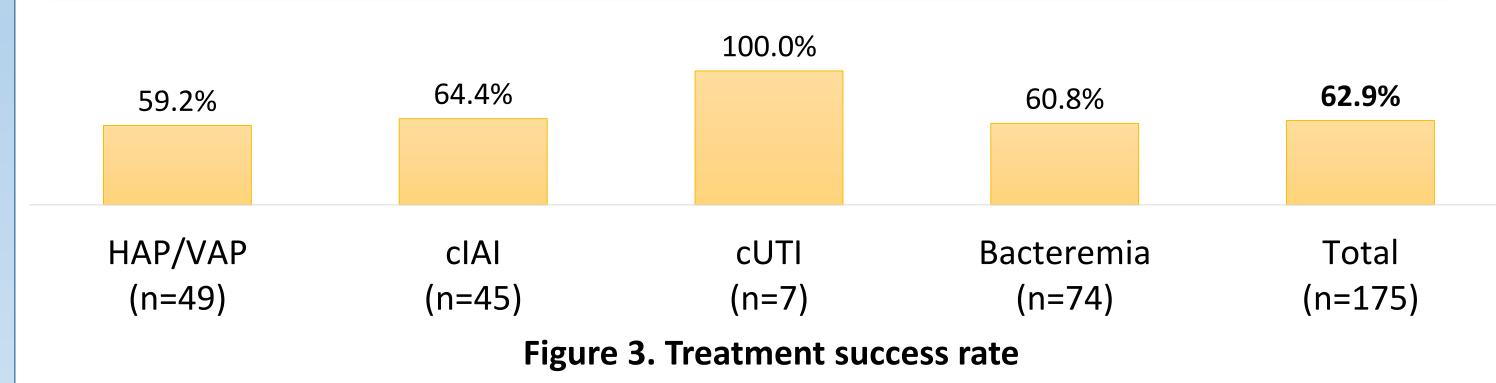
Medical Center

Evaluation of Ceftazidime/avibactam Utilization and Clinical Outcomes in Patients

with Multidrug-Resistant Gram-Negative Infections

M. HWANG¹, S. YANG¹, J. CHOI¹, H. HAN¹. ¹ASAN MEDICAL CENTER, PHARMACY, SEOUL, KOREA- SOUTH. jjj2214@amc.seoul.kr, +82-10-7510-4239.

Background


Background

2019 Global Burden of **Disease Study**

: Antimicrobial resistance caused 1.27 million deaths and contributed to 4.95 million deaths.

- Ceftazidime/avibacatm(CZA) Ceftazidime + avibactam (β-lactamase inhibitor)
- Mechanism
- : Inhibits β-lactamase, demonstrating antibacterial activity against carbapenem-resistant and multidrug-resistant Gram-negative bacteria.

[2] Treatment success rate

• The overall treatment success rate of CZA: **63%** (110 out of 175 patients)

• The difference in treatment success rate according to indication type was not statistically

Carbapenem-resistant Enterobacteriaceae (CRE) : Classified as a Critical Group in the WHO BPPL(Bacterial Priority Pathogens List).

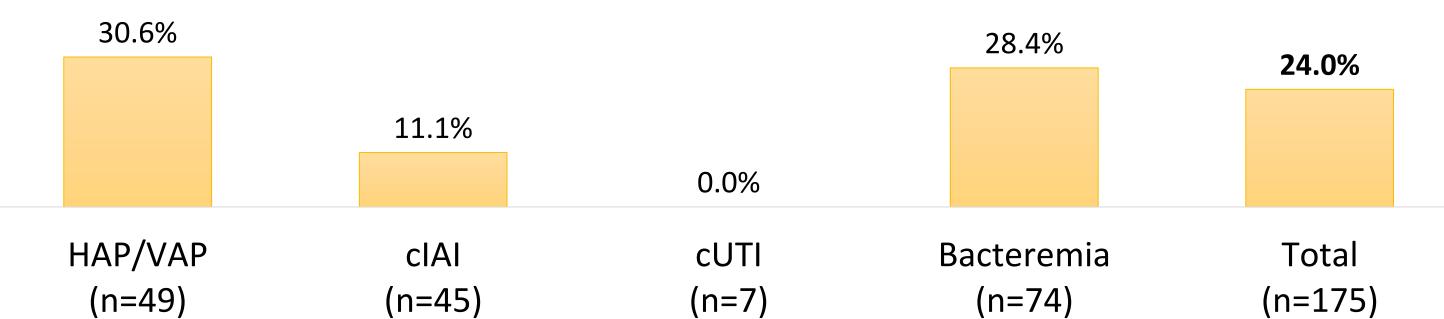
Domestic Trends

: In 2022, CRE infections increased by 155.5% compared to 2018.

• Guidelines : Recommended for CRE treatment by IDSA and ESCMID guidelines.

- Domestic Introduction : Introduced in July 2023 and covered by insurance starting February 2024.
- Necessity : Systematic studies on its real-world usage and efficacy are still lacking.

Objectives

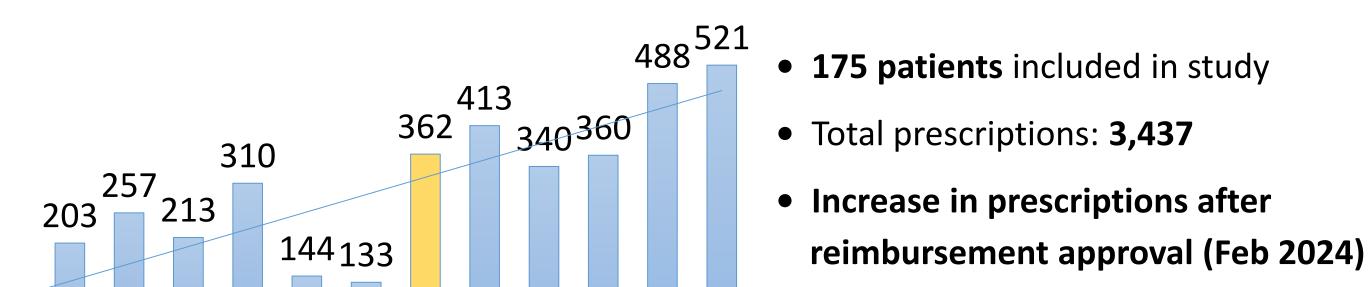

- The reimbursement approval is expected to contribute to an increased use of CZA.
- Critical time to evaluate current usage patterns and establish strategies for appropriate future use
- To optimize CZA use by monitoring its efficacy and indications while providing data for improving strategies against multidrug-resistant organisms.

significant. 100.0% 100.0% 62.5% 66.7% 64.4% 57.5% 65.6% 58.5% 62.5% 30.0% HAP/VAP cIAI cUTI Total Bacteremia (n=49) (n=45) (n=175) (n=7) (n=74) Combination therapy Monotherapy

Figure 4. Treatment success rate categorized by treatment regimen

- A significant difference in treatment success rate was observed only in patients with bacteremia, depending on whether CZA was used in combination therapy (p<0.05)
- Although monotherapy patients showed higher treatment success rates, their greater need for renal replacement therapy and longer hospitalization suggest higher severity. \rightarrow However, the small number of combination therapy patients (n=7) limits the ability to clearly compare or generalize treatment effects.

[3] 30-day mortality rate



Methods

- **1. Study design** : Observational, retrospective study
- **2.** Study period : July 2023 ~ July 2024 (total 13 months)
- **3.** Study patients : Adult patients who received CZA treatment for 3 days or more after hospitalization at Seoul Asan Medical Center
- 4. Study method
 - 1) Status of CZA use
 - 2) Efficacy evaluation
 - Treatment success rate
 - : Treatment completion without additional antibiotic treatment for the same indication treated with CZA
 - 30-day mortality rate
 - : 30-day mortality rate from the last day of CZA administration
- **5. Statistics** : SPSS version 21 (IBM CO, Armonk, NY, USA) program

Results

[1] Status of CZA use

Figure 5. 30-day mortality rate

- The overall 30-day mortality rate of CZA: **24%** (42 out of 175 patients)
- The difference in 30-day mortality rate according to indication type was not statistically significant.

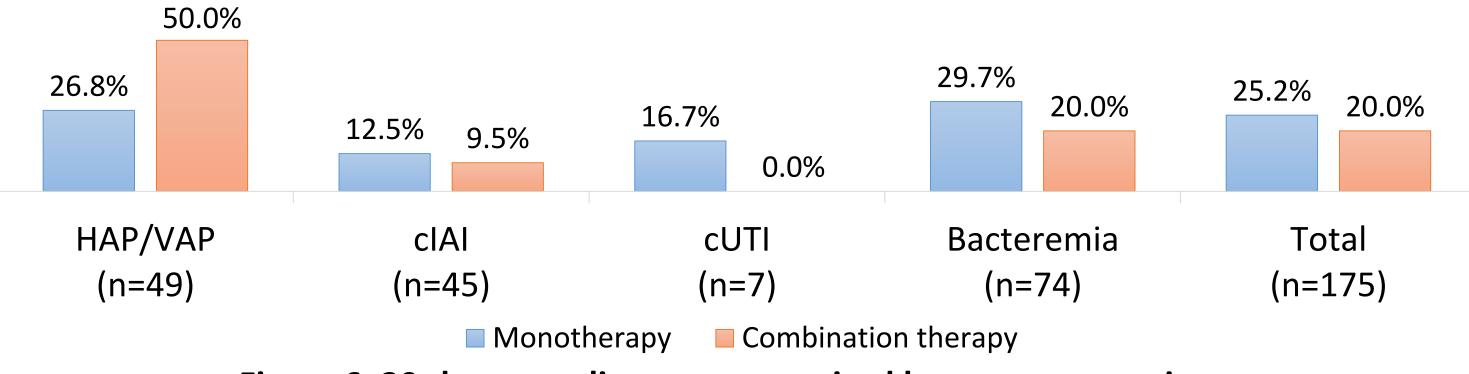


Figure 6. 30-day mortality rate categorized by treatment regimen

• The difference in 30-day mortality rate according to treatment regimen was not statistically significant.

Conclusion

- Treatment success rate (62.9%) lower than previous study (77.3%) **30-day mortality rate (24.0%)** similar to previous study (24.6%) \rightarrow Differences likely due to baseline characteristics, sample size, and success criteria
- No significant difference in effectiveness between monotherapy and combination therapy • 2019 Meta-analysis (Int J Antimicrob Agents)

22 Aug-23 Sep-23 Oct-23 Oct-23 Jan-24 Jan-24 Apr-24 May-24 Jun-24 Jul-24 Jul-23 Figure 1. CZA prescriptions per month

HAP/VAP, Bacteremia, 49, 28% 74, 42% cIAI, 45, cUTI, 26% 7,4%

Figure 2. Indications for CZA use

- Top prescribing departments : LTS (26%), HEM (16%), ONC (16%)
- Most common pathogen

: *Klebsiella pneumoniae* (159, 91%)

- Most frequent approved indication: HAP/VAP (49, 28%)
- Most frequent off-label indication: Bacteremia (74, 42%)
- Adherence to recommended dosage: 168 (96%)
- Among 7 inappropriate cases:
 - 4 adjusted to 24-hour infusion due to cost concerns • 3 did not undergo proper dose adjustment based on renal function

- : No significant difference in mortality or microbiological success
- 2024 Meta-analysis (Infection)
- : No additional clinical benefit from combination therapy
- A minimal antibiotic approach may achieve sufficient treatment outcomes and reduce costs.
- Further studies with diverse patients and larger data are needed to clarify the optimal CZA treatment strategy and improve clinical outcomes in resistant infections.

References

- 1. The Use and Effectiveness of Ceftazidime-Avibactam in Real-World Clinical Practice: EZTEAM Study. Infect Dis Ther. 2023 Mar; 12(3): 891-917.2.
- 2. Efficacy of ceftazidime/avibactam in monotherapy or combination therapy against carbapenemresistant Gram-negative bacteria: A meta-analysis. Int J Antimicrob Agents. 2019 Dec;54(6):735-740.
- 3. Ceftazidime-avibactam combination therapy versus monotherapy for treating carbapenem-resistant gram-negative infection: a systemic review and meta-analysis. Infection. 2024 Oct;52(5):2029-2042.

