Epidemiology and resistance map to aid antibiotic guideline development

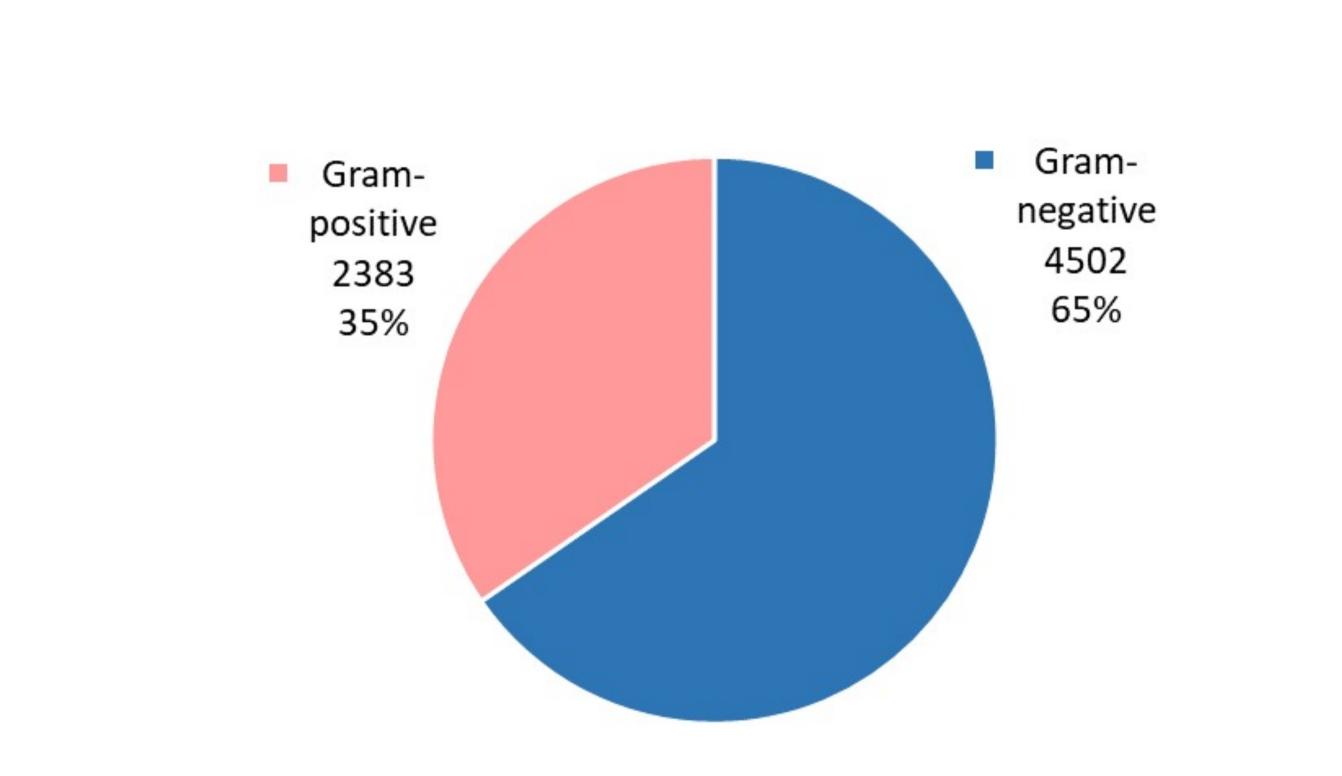
Single center retrospective study from an ED

<u>Ria Benkő^{1,2,3}</u>, Márió Gajdács^{4,} Mária Matuz^{1,2}, Gabriella Bodó², Andrea Lázár⁵, Edit Hajdú⁶, Erika Papfalvi⁶, Péter Hannauer³, Péter Erdélyi³ and Zoltán Pető³

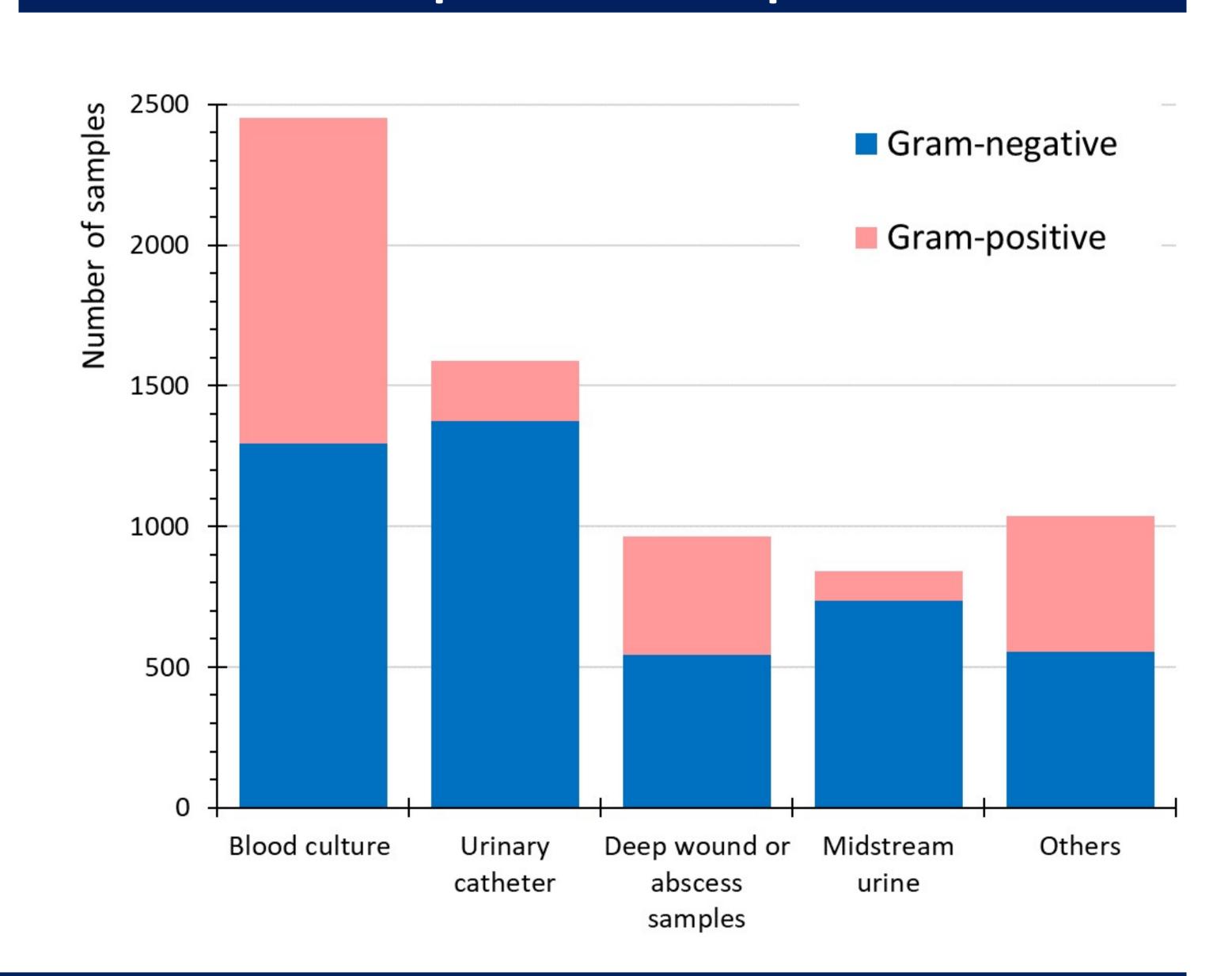
- ¹Department of Clinical Pharmacy, University of Szeged; Szeged; <u>benkoria@gmail.com</u>
- ²Central Pharmacy Department, Albert Szent-Györgyi Health Center, Szeged
- ³Department of Emergency Medicine, Albert Szent-Györgyi Health Center; Szeged
- ^{4.} Department of Pharmacodynamics and Biopharmacy, University of Szeged, Szeged
- ⁵.Institute of Clinical Microbiology, Albert Szent-Györgyi Health Center; Szeged
- ⁶ Infectious Disease Ward, 1st Department of Internal Medicine, Albert Szent-Györgyi Health Center, Szeged

Background and importance: Antimicrobial resistance (AMR) is one of the most important global threats and antibiotic use is one of the main drivers behind. Previously we identified suboptimal antibiotic use at our Emergency Department. International antibiotic guidelines for specific conditions cannot be adopted without the knowledge of local epidemiology and resistance, these are the essential first steps to develop an empiric antibiotic protocol.

Aim and objectives: To identify predominant isolates, clinical specimens and reveal resistance patterns of bacterial isolates.


Materials and methods: The study (2014-2019) was performed at the Emergency Department of the University of Szeged. All positive microbiological isolates were retrieved for a five year period.. Non-bacterial isolates, contaminants and duplicate isolates were screened and excluded. Bacterial identification was performed using MALDI-TOF MS. Antibiotic susceptibility-testing and interpretation of drug resistance were based on ESCMID/EUCAST standards.

Most frequent bacterial isolates


Gram ne			Gram positive (N=2383; 100%)								
(N=4502;	100%)										
	frequency	%		frequency	%						
Escherichia spp	2194	48.7	Staphylococcus spp	906	38.						
Klebsiella spp	664	14.7	Enterococcus spp	471	19.						
Proteus spp	526	11.7	Streptococcus spp	431	18.						
	Σ	~ 75%		∑ ~ 7	⁷ 5%						

Conclusion and relevance: The most frequent bacteria and current resistance patterns were identified. Some of the revealed resistance patterns (e.g. high fluoroquinolone resistance among Gram-negative bacteria) may pose therapeutic challenges. The results of this survey will guide the development of our local antibiotic guideline.

Results of the Gram stain

Most frequent clinical specimens

Resistance pattern of the most frequently isolated bacteria (resistance %)

Gram-negative	ampicillin	amoxicillin	amoxicillin and clavulanic acid	cefuroxime	cefotaxime	ceftriaxone	ceftazidime	cefepime	piperacilllin and tazobactam	meropenem	ciprofloxacin	amikacin	gentamycin	sulphamethoxazole-trimethoprim
Klebsiella pneumoniae	100	NT	32	33	27	31	31	23	24	0	37	21	21	34
Escherichia coli	52	NT	18	15	14	14	14	13	15	0	32	11	10	27
Proteus mirabilis	60	NT	38	37	28	31	31	24	25	0	42	24	23	68

Gram-positive	oxacillin	ampicillin	amoxicillin	amoxicillin and clavulanic acid	cefuroxime	clindamycin	ciprofloxacin	erithromicin	clarithromycin	gentamycin	vancomycin	sulphamethoxazole-trimethoprim
Enterococcus faecalis	NT	0	0	1	Z	R	43	Z	Z	\mathbb{R}	0	IR
Enterococcus faecium	NT	0	100	100	Z	Z	93	Z	Z	IR	33	IR
Staphylococcus aureus	17	NT	NT	17	17	21	19	22	22	1	0	1

