POPULATION PHARMACOKINETIC MODEL OF FLUDARABINE IN PATIENTS UNDERGOING CHIMERIC ANTIGEN RECEPTOR T CELLS THERAPY

J. Varela Gonzalez Aller^{1,2}, M. Sánchez³, J.I. Fernández De Trocóniz⁴, C. Alonso², G. Iacoboni³, C. Carpio³, P. Barba³, M. Miarons².

¹ Catalan Institute Of Oncology - Hospitalet, Pharmacy, L'hospitalet De Llobregat, Spain. ²Vall D'hebron University Hospital, Pharmacy, Barcelona, Spain ³Vall D'hebron University Hospital, Hematology, Barcelona, Spain ⁴Pharmacometrics And Systems Pharmacology Research Unit- Department Of Pharmaceuticaal Technology And Chemistry- School Of Pharmacy And Nutrition-University Of Navarra, Pharmacy, Navarra, Spain

BACKGROUND

- Optimal fludarabine dosing based on population pharmacokinetic analysis (popPK) can predict outcomes in patients undergoing myeloablative conditioning prior to hematopoietic stem cell transplantation^{1,2}
- There is no popPK tailored for patients receiving fludarabine as part of lymphodepleting regimen before chimeric antigen receptor T (CAR-T).

AIM AND OBJECTIVES

• To develop a specific PopPK model of fludarabine in patients undergoing CAR-T cell therapy.

MATERIALS AND METHODS

- Prospective study, patients with r/r LBCL receiving CAR-T therapy with axi-cel or tisa-cel at our institution, between January 2021 and July 2022.
- Fludarabine total dose of 90mg/m² for axi-cel and 75mg/m² for tisa-cel.
- PopPK modelling was performed using nonlinear mixed-effects analysis (NONMEM).

RESULTS

Table 1. Baseline characteristics of the patients included in the population pharmacokinetic model (n=56)

Overall population (n=56)	
Sex; n = male (%)	33 (59)
Age (range)	59 (23 - 82)
Weight (kg)	
Mean (SD)	79.6 (12.9)
Median (range)	82.5 (52 – 101)
Body mass index (kg/m²)	
Mean (SD)	25.2 (3.5)
Median (range)	25.3 (18 - 36.2)
CAR-T construct; n = number (%)	
Axi-cel	38 (68)
Tisa-cel	18 (32)
Histological diagnosis; n (%)	
Diffuse large B-cell lymphoma	30 (54)
Transformed from indolent lymphoma	20 (36)
High-grade B-cell lymphoma	3 (5)
Other*	3 (5)
ECOG	
0	32 (57)
1	20 (36)
2	4 (7)
Prior HSCT	21 (37)
Serum Albumin (g/dL)	
Median (range)	4 (2.7 – 4.8)
Lymphodepletion Therapy	
Outpatient	52 (93)
Inpatient	4 (7)
Renal Function [eGFR: mL/min/1.73 m ²]	
Mean (range)	90 (39.04 - 213.91)

- Body size, as represented by actual body weight (ABW) with allometric scaling, was a significant predictor of all pharmacokinetic parameters.
- CAR-T construct and estimated glomerular filtration rate (eGFR) also showed statistical significance for clearance (CL).
- CL was differentiated into a non-renal (4.4 \pm 1.2% L/h/70 kg and 3.9 \pm

0.95% L/h/70 kg for axi-cel and tisa-cel, respectively) and renal (1.7±1.0%x(eGFR)x(ABW/70)^{0.75} L/h/70 kg) component

Fig. 1 Goodness-of-fit plots for the final model. **(A)** Observed vs population-predicted logarithm concentrations. **(B)** Observed vs individual-predicted logarithm concentrations. **(C)** Conditional weighted residuals (CWRES) vs population logarithm predictions. **(D)** Conditional weighted residuals (CWRES) vs time (h). Solid black line is the identity line. The blue lines display the trend of the data. Green points represent observed fludarabine serum logarithm

• Actual body weight, estimated glomerular filtration rate and type of CAR-T are important predictors of fludarabine pharmacokinetics.

REFERENCES

- 1. Langenhorst, Jurgen B et al. "Population Pharmacokinetics of Fludarabine in Children and Adults during Conditioning Prior to Allogeneic Hematopoietic Cell Transplantation." Clinical pharmacokinetics vol. 58,5 (2019): 627-637. doi:10.1007/s40262-018-0715-9
- 2. Langenhorst, J B et al. "Fludarabine exposure in the conditioning prior to allogeneic hematopoietic cell transplantation predicts outcomes." Blood advances vol. 3,14 (2019): 2179-2187. doi:10.1182/bloodadvances.2018029421

To download the poster

CONTACT: Javier Varela González-Aller javiervarela@iconcologia.net