Practical application of antibiotic use data

Uga Dumpis MD PhD
Pauls Stradins Clinical University Hospital
University of Latvia

No conflict of interest

Questions for the ACASEM Survey

Question 1. Antimicrobial stewardship activities in hospitals should be combined with infection control interventions

True False

Question 2. Point prevalence surveys can be used to assess

- Prevalence of antibiotic use
- Appropriateness of antibiotic therapy by diagnosis
- Appropriateness of antibiotic prescriptions according to the class of antibiotic
- Appropriateness of antibiotic therapy by medical specialization
- Dose and administration route
- All mentioned above

Question 3. Dose and length of antibiotic treatment is dependent on

Localization of disease

Type of microorganism

Speed of response to treatment

All the factors

Sl.vēstures/Amb.kartes Nr. 2646	Nosūtītājiestāde/nodaļa. KAN
	Novertējums SIR sistēmā: S-jūtīgs
	I-mēreni jūtīgs
Izmeklējamais materiāls . w Purces	R-rezistents

Mikroorganisms	Klebriella	2	3
Antibiotikas nosaukums	precuowae E	SBL + Kaibapenen	ôrt.
Penicillin	0	/	
Oxacillin			
Ampicillin	R		
Amoxicilli/Clavulanate	R		
Piperac./Tazobactam	R		
Aztreonam			
Imipenem	R		
Cephalothin	R		
Cefazolin	R		
Cefoxitin			,
Cefuroxime			
Cefoperazone	-		
Ceftriaxone	R		
Ceftazidime	R		
Cefotaxime	R		
Amikacin			
Gentamicin	R		
Tobramycin	R		
Erythromycin			
Ciprofloxacin	R		
Ofloxacin			
Norfloxacin			
Chlorampfenicol	R		
Clindamycin			
Rifampin			
Doxycycline			
Tetracycline			
Trimethoprim/Sulfamethoxazole	R		
Vancomycin			
Nitrofurantion			
Linezolid			
Meropenem			
Cefepime			
Ampicillin/Sulbactam			

Testēšanas pārskata	10	07	00.
izsniegšanas datums	1 0.	UJ.	2011

Exchange of resistance mechanisms and bacteria between different reservoirs

ECDC/EFSA/EMA first joint report on the integrated analysis of the consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals

Containment of spread of MDR pathogens

Antimicrobial stewardship (AMS)

- Definition of AMS: a strategy aiming at promoting responsible antibiotic use
- AMS programme in hospitals= a set of interventions to fine tune antibiotic use in regards to
 - Efficacy
 - Toxicity
 - Resistance-induction
 - Clostridium difficile induction
 - IV to PO switch
 - Cost
 - Discontinuation

Baur D. Systematic review 2017 Lancet infectious Diseases

Opportunities antibiotic stewardship policies

Where to start AMS activity?

- Clear opportunity to improve
 - PPS data
 - Laboratory surveillance reports
 - Healthcare associated infection surveillance
- Potential high impact on use and spread of resistance
 - Intensive care units
 - Transplantation
 - Nephrology

How to start?

- Start with friendly collegues
- Frequent personal presence
- Start small
- Build on success
- Monitor your impact and adapt
- Avoid multiplicity of advisers for the same patient/department
- Feedback to collegues
 - Short and easy to understand
 - Real time involvement

Planning stage

- Administrative support
- Creation of the team
- Choose monitoring system
- List of indicators
- Information for the department

How to measure and assess antibiotic use?

- Electronic records RDD or PDD
- Point prevalence surveys PDD
- Pharmacy
 - DDD/stays,
 - Packages
 - Grams
 - Euros

DDD usefullness

- Reduction in general consumption DDD/stays
- Reduction in consumption of selected antibiotics DDD/stays
- Replacement by different antibiotic DDD/stays

Difficult due to patient mix

Point prevalence approach

- One day, one clinical unit
- All patients on antibiotics/all patients
 - Patient demographics
 - Reason for antibiotics
 - Antibiotic
 - Dose

What to include on antimicrobial section??

section?? **PROPHYLAXIS** Day before survey 8:00 AM - 8:00 AM S day of survey U Ε TREATMENT Planned at time of survey If stopped before survey do not include M Ε INTERMITTENT PLANNED TREATMENT e.g. alternate day

European Prevalence Survey of Healthcare-Associated Infections and Antimicrobial Use Form A. Patient-based data (standard protocol)

Patient data (to collec	et for all patients)			Antimicrobia
Hospital code				
Ward name (abbr.)/U	Jnit Id W	ard specialty		
Survey date: _	/ /	(dd/mm/yyyy)		
Patient Counter: _				
Age in years: y	rs; Age if < 2 year old	d: months		
Sex: M F Date	te of hospital admiss	ion:/		Route: P: parenter
Consultant/Patient	Specialty:	aa / mm / yyyy	(community-acquire (HI); surgical proph
Surgery since admi	ssion:			other; UI: Unknowi Y/N
O No surgery	O Minimal invasive/	non-NHSN surgery		
O NHSN surgery	O Unknown			Case definition
McCabe score:	O Non-fatal disease			Relevant device
	O Ultimately fatal di	sease		pefore onset ⁽³⁾
	O Rapidly fatal dise	ase		Present at admi
	O Unknown			Date of onset(
Central vascular ca	theter:	O No ,O Yes O Unk	$ \cdot $	Origin of infec
Peripheral vascular	catheter:	O No O Yes O Unk	\Box	Jilgili oi illied
Urinary catheter:		O No O Yes O Unk	1	f BSI: source ⁽
Intubation:		O No O Yes O Unk		
Patient receives anti	microbial(s) ⁽¹⁾ :	O No O Yes	┛ 。 ┌	
Patient has active H	AI ⁽²⁾ :	O No O Yes	<u> </u>	Microorganisn
		axis 24h before 8:00 AM on	<u> </u>	Microorganisn
the day of the survey: if yes	till antimicrobial use data: (2) [infection with onset > Day	1	

(4) At the time of the common superior continue and business of the before 0.00 AM and
(1) At the time of the survey, except for surgical prophylaxis 24h before 8:00 AM on
the day of the survey; if yes, fill antimicrobial use data; (2) [infection with onset ≥ Day
3, OR SSI criteria met (surgery in previous 30d/1yr), OR discharged from acute care
hospital <48h ago, OR CDI and discharged from acute care hospital < 28 days ago
OR onset < Day 3 after invasive device/procedure on D1 or D2] AND [HAI case
criteria met on survey day OR patient is receiving (any) treatment for HAI AND case
criteria are met between D1 of treatment and survey day]; if yes, fill HAI data

•	Antimicrobial (generic or brand name)	Route	Indication	Diagnosis (site)	Reason in notes

Route: P: parenteral, O: oral, R: rectal, I: inhalation; Indication: CI - LI - HI: treatment intention for community-acquired (CI), long/intermediate-term care-acquired (LI) or acute hospital-acquired infection (HI); surgical prophylaxis: SP1: single dose, SP2: one day, SP3: >1day; MP: medical prophylaxis; O: other; UI: Unknown indication; Diagnosis: see site list, only for treatment intention Reason in notes:

Y/N						
	HAI 1	I	HAI 2	2	HAI :	3
Case definition code						
Relevant device in situ before onset ⁽³⁾	O Yes O No O Unknown)	O Yes O N O Unknown	-	O Yes O N O Unknowr	
Present at admission	O Yes O N	o	O Yes O No		O Yes O No	
Date of onset ⁽⁴⁾	//		//		//	
Origin of infection	O current hospital O other hospital O other origin/ unk		O current hospital O other hospital O other origin/ unk		O current hospital O other hospital O other origin/ unk	
If BSI: source ⁽⁵⁾						
	MO-code	R ⁽⁶⁾	MO-code	R ⁽⁶⁾	MO-code	R ⁽⁶⁾
Microorganism 1						
Microorganism 2						
Microorganism 3						
(0)	f DN 01/0				40 1 (

(3) relevant device use (intubation for PN, CVC for BSI, urinary catheter for UTI) in 48 hours before onset of infection (even intermittent use), 7 days for UTI; (4) Only for infections not present/active at admission (dd/mm/yyyy); (5) C-CVC, C-PVC, S-PUL, S-UTI, S-DIG, S-SSI, S-SST, S-OTH, UO, UNK; (6) AMR marker 0,1,2 or 9, see table

Interventions measured by point prevalence (Process measures)

- New formulary and education
- New guidelines and education
- Shortened laboratory reports
- Switch from IV to oral

Funnel plot comparing hospital prescribing in the UK using proportion of children on antibiotics.

Myriam Gharbi et al. BMJ Open 2016;6:e012675

Ina Willemsen et al. Antimicrob. Agents Chemother. 2007;51:864-867

Antimicrobial Agents and Chemotherapy

Appropriateness of antibiotic prescriptions assesed with point prevance survey

- Appropriateness of antibiotic prescriptions according to the class of antibiotic
- Appropriateness of antibiotic therapy by diagnosis
- Appropriateness of antibiotic therapy by medical specialization

High quality of each prescription: ultimate goal of all AMS programmes.

Figure 1: The 22 domains of responsible antibiotic use identified through a systematic review. On the right side of the figure are the domains affecting the individual patient and on the left of the figure are the societal domains

Impact of diagnostic testing

- Accurate identification of bacterial infection and rapid identification and susceptibility testing can improve antibiotic use and clinical outcomes
- Negative test results can assist providers with stopping antibiotics
- Cascade reporting of antibiotics may improve appropriate selection of antibiotics

Resistance testing

- Strains are sorted according to level of Minimal Inhibitory Concentration (MIC) versus reference breakpoints
- c and C are the minor and major breakpoints

Susceptible		<u>Intermediate</u>		Resistant
MIC <	С	≤ MIC <	С	≤ MIC

Breakpoints

Breakpoints are determined using two approaches

- Pharmacological concept
- Clinical and epidemiological concept
- Breakpoints are the expression of a consensus among the scientific community at a given time in a country or region

The epidemiological concept for breakpoints

Dosages

EUCAST Clinical Breakpoint Tables v. 7.1, valid from 2017-0

EUCAST breakpoints are based on the following dosages (see section 8 in Rationale Documents).

Penicillins	Standard dose	High dose	
Benzylpenicillin	0.6 g x 4 iv	2.4 g x 6 iv	
Ampicillin	0.5 -1 g x 3-4 iv	1-2 g x 4-6 iv	
Ampicillin-sulbactam	3 g x 3 iv	4 g x 3 iv	
Amoxicillin	0.5 g x 3 iv Oral dosage under discussion	2 g x 6 iv Oral dosage under discussion	
Amoxicillin-clavulanic acid	(1 g amoxicillin + 0.2 g clavulanic acid) x 3 iv Oral dosage under discussion	(2 g amoxicillin + 0.2 g clavulanic acid) x 3 iv Oral dosage under discussion	
Piperacillin	4 g x 3 iv	4 g x 4 iv	
Piperacillin-tazobactam	(4 g piperacillin + 0.5 g tazobactam) x 3 iv	(4 g piperacillin + 0.5 g tazobactam) x 4 iv	
Ticarcillin	3 g x 4 iv	3 g x 6 iv	
Ticarcillin-clavulanic acid	(3 g ticarcillin + 0.1 g clavulanic acid) x 4 iv	(3 g ticarcillin + 0.1 g clavulanic acid) x 6 iv	
Temocillin			
Phenoxymethylpenicillin	0.5-2 g x 3-4	None	
Oxacillin	Clinical breakpoints not available	Clinical breakpoints not available	
Cloxacillin	0.5 g x 4 oral or 1 g x 4 iv	1 g x 4 oral or 2 g x 6 iv	
Dicloxacillin	0.5-1 g x 4 oral or 1 g x 4 iv	2 g x 4 oral or 2 g x 6 iv	
Flucloxacillin	1 g x 3 oral or 2 g x 4 iv	1 g x 4 oral or 2 g x 6 iv	
Mecillinam	0.2-0.4 g x 3 oral	None	

Microorganism	Antibiotic	MIC ₅₀ (mg L ⁻¹)	MPC ₅₀ (mg L ⁻¹)
Pseudomonas	Imipenem	2	32
aeruginosa	Meropenem	0.5	8
	Doripenem	0.5	4
Escherichia coli	Imipenem	0.25	0.5
	Meropenem	0.03	0.06
	Doripenem	0.03	0.125

THE GLOBAL DEFINITION OF RESPONSIBLE ANTIBIOTIC USE: THREE HIGHLIGHTS

- Education
- Duration
- Access and availability

When the antibiotic treatment should be stopped

 When the benefit to the patient (but also for society) no longer outweights the potential harm

What are the harms of inappropriately prolonged antibiotic therapy?

Antibiotic resistance selection pressure

Macroepidemiological considerations

- Penicillins
- Aminoglycosides
- Nitrofurantoin, trimetroprim
- First generation cephalosporins
- Second generation cephalosporins
- Tetracyclines
- Macrolides
- 3rd generation cephalosporins
- Fluoroquinolones
- Carbapenems

From: Emergence and spread of antibiotic resistance following exposure to antibiotics FEMS Microbiol Rev. 2011;35(5):977-991. doi:10.1111/j.1574-6976.2011.00295.x

How to stop antibiotics earlier?

- Reduction in procalcitonin and CRP
- No fever for 2-3 days
- Feeling well, eating well

Conclusions

- AMS interventions should be targeted and well planned
- Different methods can be used to asses the impact of AMS activities
- Microbiology laboratory support is essential to assure quality of AMS
- Selection of optimal treatment regimen for each patient is essential for credibility of AMS programmes

Questions for the ACASEM Survey

Question1. Antimicrobial stewardship activities in hospitals should be combined with infection control interventions

True

Point prevalence surveys can be used to assess impact of AMS interventions

- Prevalence of antibiotic use
- Appropriateness of antibiotic prescriptions according to the class of antibiotic
- Appropriateness of antibiotic therapy by diagnosis
- Appropriateness of antibiotic therapy by medical specialization
- All mentioned above

Dose and length of antibiotic treatment is dependent on

Type of disease

Type of microorganism

Speed of response to treatment

All of the factors

