

Formulation of biotech products

Bruno Gander, PhD
Institute of Pharmaceutical Sciences,
ETH Zürich, Switzerland

Acknowlegedments

Statement of conflict

None

Learning objectives and outcomes

- Knowledge of measures to remove microbial contaminants and their limitations
- 2) Knowledge of conventional measures to inhibit drug degradation and their limitations
- 3) Knowledge of newer approaches for protein stabilization and improving protein delivery

Challenges of biotech drugs

Biopharmaceuticals have lengthy, expensive and complicated formulation processes in comparison to those of low molecular weight drugs

Chemical stability

Physical stability

Sterilization

Administration routes

Targeting

Sustained action

Delivery kinetics

Presystemic metabolism

Half-life

Bioavailability Antigenicity

Clearance by MPS

Formulation strategies and tools

Stabilization

Crystallization

PEGylation

Aseptic processing

Bioconjugation

Protease inhibitors

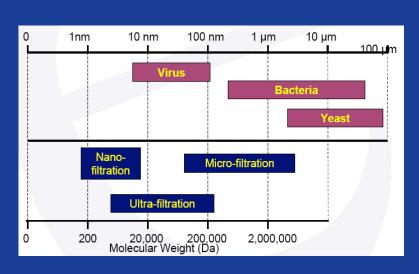
Localized Delivery

Absorption enhancers

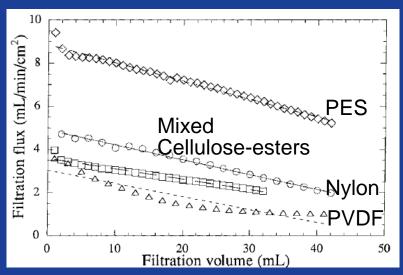
Nasal delivery

Bioadhesion

Pulmonary delivery


Microneedles

Sterility/purity of a biotech product – the challenges


- Chemical and physical instability of drug
- Bacterial contaminants
- Viral contaminants (from production cell line or process-related)
- Pyrogens (from production or process-related)

Elimination and killing of bacteria (yeast)

- Sterilization?
- Aseptic processing sterile filtration (0.22 μm)
- Low protein binding filters, eg, hydrophilic PVDF, PES

http://www.edenbiodesign.com/documents/info_eden_biodesign1.pdf

rhHG filtration through 0.22 μm filters

Maa and Hsu. *J PharmSci* 1998;87:808–812

Elimination and killing of viruses

- Sources: cell banks, human/animal materials (plasma);
 viral seeds; culture media; affinity matrices
- Aim: load of 10⁻⁶; 1 2 validated clearance steps
- Inactivation (preferred): heat, chemical
- Clearance:
 - precipitation
 - chromatography
 - ultracentrifugation
 - filtration

Table 3. Validated Virus Cle Production Process	Talecris Albumin	Products (20% and 25%)	
			r

1 Tourist Touris						
Process Steps	Reduction Factor (log₁₀) for Enveloped Viral			Reduction Factor (log₁₀) for Non-Enveloped Viruses		
	HIV	BVDV	PRV	Reo	HAV	PPV
Fraction II + III separation	3.4	3.6	3.9	2.1	1.4	1.0
Depth filtration	3.4	<1.0	≥3.4	4.9	2.0	4.2
Precipitation/acetone suspension	≥5.1	7.5	≥4.2	2.3	ND	ND
Pasteurization	≥5.9	≥5.2	≥4.8	5.6	4.4	1.6
Total reduction factor (log₁₀)	≥17.8	≥16.3	≥16.3	14.9	7.8	6.8

HIV: Human immunodeficiency virus
BVDV: Bovine viral diarrhea virus, a model for HCV
PRV: Pseudorabies virus, a model for HBV and herpes viruses
HAV: Hepatitis A virus

Reo 3: Reovirus type 3, a model for viruses resistant to physicochemical agents

PPV: Porcine parvovirus, a model for human parvovirus B19

ND: Not done

Virus clearance by filtration

- Size exclusion and/or adsorptive retention
- Direct flow or tangential flow

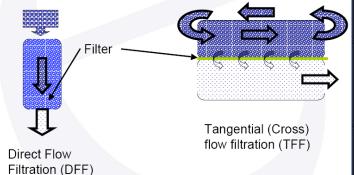
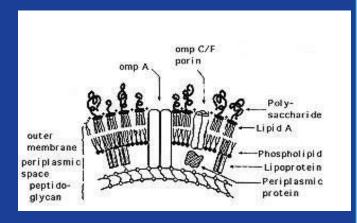



Table 1. Commercially available virus filtration products

Company	Product	Virus Retention Claim	Virus Size
Asahi-Kasei	Planova 15N	>6.2 log Parvovirus >6.7 log Poliovirus	18–26 nm 28–30 nm
	Planova 20N	>4.3 log Parvovirus >5.4 log Encephalomyocarditis	18–26 nm 28–30 nm
	Planova 35N	>5.9 log Bovine Viral Diarrhea virus >7.3 log HIV	40–70 nm 80–130 nm
Millipore	Viresolve NFP	>4 log φX-174 bacteriophage	28 nm
	Viresolve NFR	>6 log Retrovirus	80–130 nm
Pall	ULtipor DV20	>3 log PP7 bacteriophage >6 log PR772 bacteriophage	26 nm 76–88 nm
	ULtipor DV50	>6 log PR772 bacteriophage	76–88 nm
Sartorius	Virosart CPV	>4 log PP7 bacteriophage >6 log Retrovirus	26 nm 80–130 nm

Pyrogen removal

- Maximum endotoxin levels:
 5 EU/kg product/h
- Detection:
 - rabbit
 - LAL
 - monocyte activation/cytokine assay

www.bact.wisc.edu/ themicrobialworld/endo1.jpg

- Removal:
 - ion exchange chromtaography
 - ultrafiltration
 - inactivation (heat, oxidation, hydrolysis)

Instability of protein requires extensive protein analytics

Structure/Sequence

- N- and C- terminal
- Amino acid analysis
- Peptide mapping/ sequencing
- Carbohydrate analysis
- MS

Purity

- RP-HPLC; GPC
- SDS-PAGE
- FFF
- Immunoblot
- Endotoxin assay
- Virus test
- DNA assay

Identity

- Peptide mapping
- IEF

Size

- Electrophoresis
- GPC
- FFF
- Light scattering
- Ultrafiltration

Charge

- IEF
- IEC

Shape

- CD
- X-Ray

Concentration

- Protein assay (Lowry)
- UV, fluorescence
- Amino acid quantitation
- ELISA

Activity

- Bioassay
- Specific binding assay

Additives needed to produce water-soluble injectable solutions

• pH 4-6

Buffers Citrate, acetate, glycine, histidine, succinate,

phosphate, tris

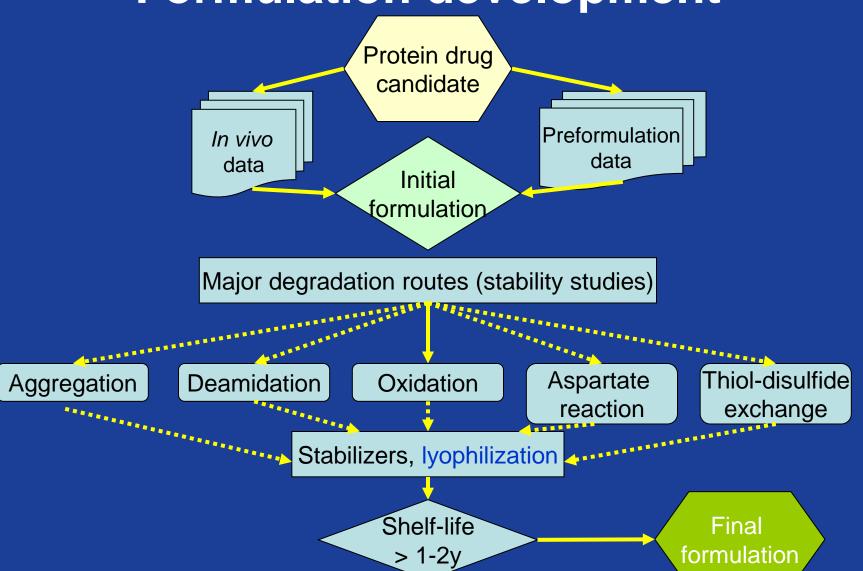
Antioxidants
 Ascorbic acid, citric acid, Met, Cys, EDTA (O₂)

removal/protection; protection against light)

Preservatives
 Phenol, benzyl alcohol, benzoic acid, parabens

Surfactants
 Polysorbate, poloxamer, albumin

H-bonding promoters Sugars, glycols

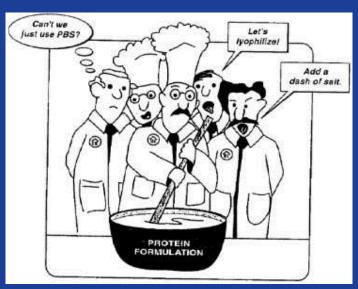

Steric shields
 PVP, dextran, PEG, albumin, poloxamer

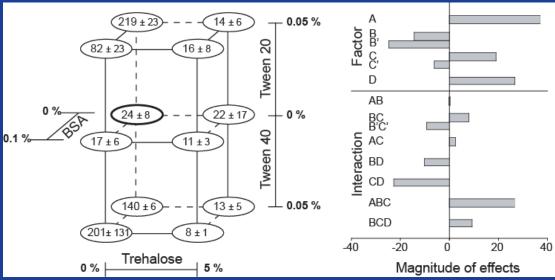
Complexation agents Zn, Mg

Cryoprotectants
 Sugars, sugar alcohols, glass forming agents

(Chemical stabilization) (Pegylation, replacement of amino acids)

Formulation development

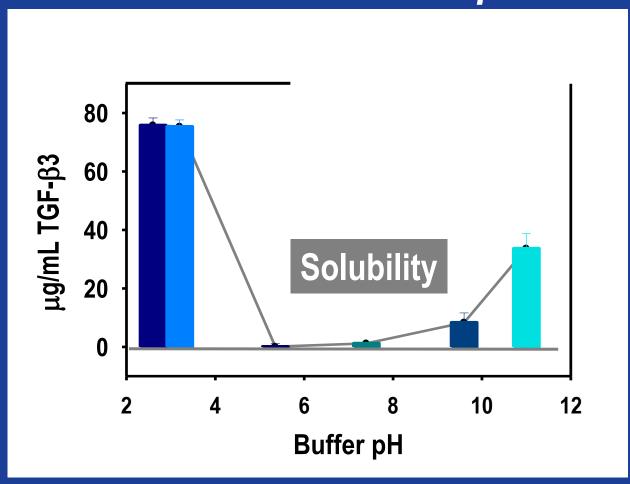

Chemical and physical stability – stress factors and effects

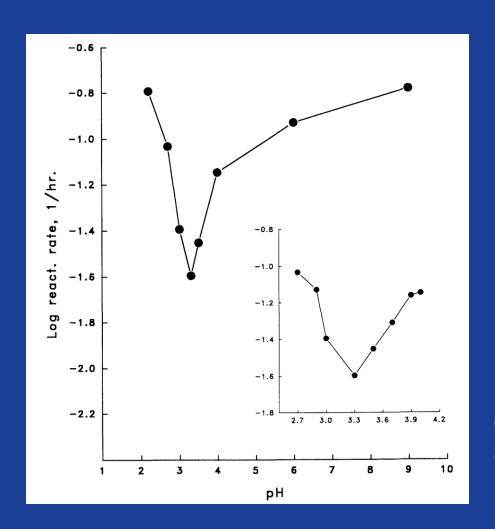

- pH
- Ionic strength
- Temp, O₂
- Agitation, shear forces
 Stirring, pumping, filtration, filling
- Interfaces
- Freezing
- Freeze-drying
- Moisture

- Deamidation (Asn, Gln)
- Cleavage (Asp-X)
- Oxidation (Met, Cys, His, Trp, Tyr)
- Thiol disulfide exchange (Cys)
- Conformational changes
- Aggregation
- Adsorption

Formulation?

Intuition? or Experimental factorial design?




Illustrated by Leigh Rondano, Boehringer Ingelheim Pharmaceuticals

Pfister L. PhD-thesis, ETH Zurich, 2007

Effect of pH on solubility of TGF-β3

Effect of pH on sCT degradation

Degradation of salmon calcitonin in 0.01 M citric acid / 0.02 M phosphate and in 0.01 M HCl / 0.02 M borate buffer (pH 9) solution at 70 ° C

Effect of shaking on stability and antigenicity of various insulins

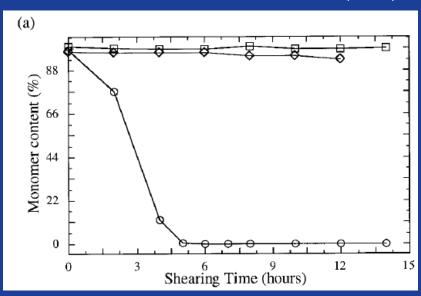
Table 3
Long-term physical stability of various insulins evaluated by shake testing^a

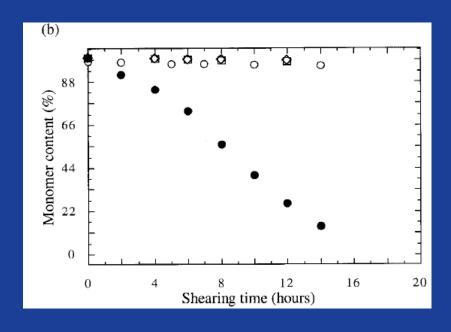
Sample ^b	$T_{50\%} (\mathrm{days})^{\mathrm{c}}$
Zn ²⁺ -insulin	0.5 ± 0.3
Zn-free insulin	0.4 ± 0.2
F750	18.4 ± 2.8
F2000	20.7 ± 4.1
K750	4.3 ± 1.1
K2000	8.6 ± 1.7

^a Accelerated shake-test done at 100 strokes/min and 37 °C.

Antigenicity (Relative IgG-titres in mice; %)

100.0 1.18 0 0.96


^b Protein solutions prepared in PBS (38.0 mM, pH 7.4) containing 0.01% Na-azide.


^c Elapsed time to 50% of the initial protein concentration remaining (mean±standard deviation).

Effect of shearing on aggregation of proteins

Protein monomer content under shearing (concentric cylinder device; 1500 rpm)

Maa and Hsu. *J Pharm Sci* 87:808–812 (1998)

in presence of air-liquid interface; Key: O rhGH; □ rhDNAse; ◊ rt-PA in presence of 1% PS beads (4-150 μm) Key: (○) rhGH; (○) rhGH + 0.05% polysorbate 20; (□) rhDNAse; (◊) rt-PA

Shelf-life of marketed sCT products

Product	Adminis- tration	Storage	Excipients
Miacalcin [®] Novartis	sc, im	2-8° C, 2 w at RT	Acetate buffer, phenol
Forcaltonin [®] Unigene	sc, im	2-8 ° C	Acetate buffer
Miacalcin [®] Novartis	Nasal spray	15-25 ° C for 4 w	HCI, benzalkonium chloride
Fortical [®] Unigen	Nasal spray	20-25 ° C for 30 d	Citrate buffer, phenyl ethyl alcohol, benzyl alcohol, polysorbate 80

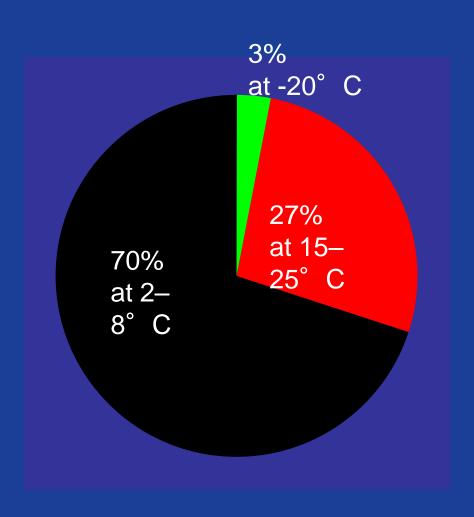
Freeze-drying may increase protein stability – critical steps

Freezing

- structural perturbations ('cold denaturation')
- → pH-shifts
- increasing concentration of protein and additives
- protein adsorption to ice-liquid interface
- mechanical stress

Dehydration

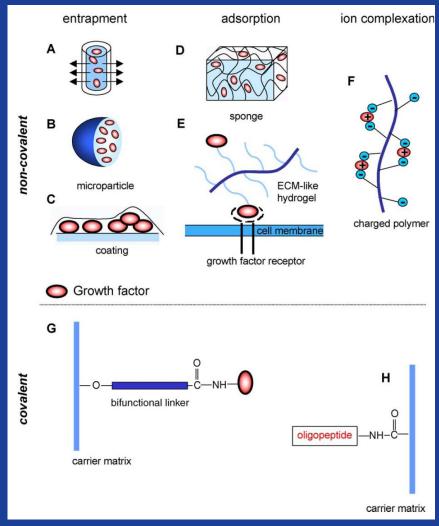
- structural perturbations (loss of H-bonds; unfolding)
- structural damage (aggregation)


Freeze-drying – excipients

- Buffering agents
- Antioxidants
- Surfactants
- Complexation agents
- Chelators
- Preservatives
- Tonicifiers
- Cryo-/lyoprotectants: PEG, sugars, mannitol, lactose, trehalose, albumin
- Bulking agents: mannitol, sorbitol, glycine, arginine
- Collapse temp. modifiers: dextran, albumin, gelatine

Cryo-/lyoprotectants, bulking agents, collapse temperature modifiers

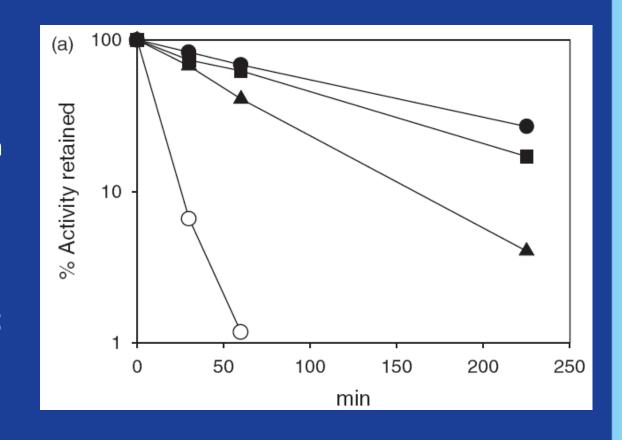
- Cryo-/lyoprotectants:
 - replace water for hydrogen bonding
 - increase T_a and collapse T of cake (*cave* sorbitol!)
 - adsorb moisture from stoppers
 - prevent overdrying during secondary drying step
 - 350-500 moles of sugar/mole protein
- Bulking agents: elegance of cake
- Collapse temp. modifiers: increase collapse temperature


Storage conditions for lyophilized FDA-approved proteins

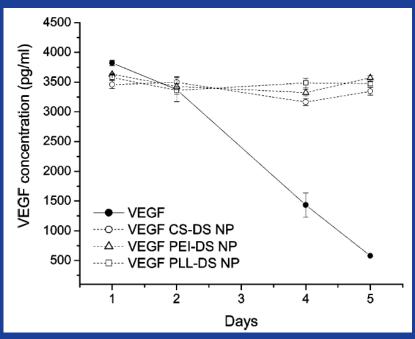
Example: trastuzumab (Herceptin®)

- Recombinant humanized monoclonal antibody against HER2/neu receptor of tumor cells
- Lyophilisate
- Components: histidin HCl/histidin, trehalose, polysorbate 20
- Storage: 2–8 ° C
- Incompatibilities: glucose, other drugs → aggregation
- pH after reconstitution: 6
- Reconstitution: avoid shaking and foam formation
- Injection: empty syringe slowly to avoid aggregation

New approaches for protein stabilization (and controlled release)

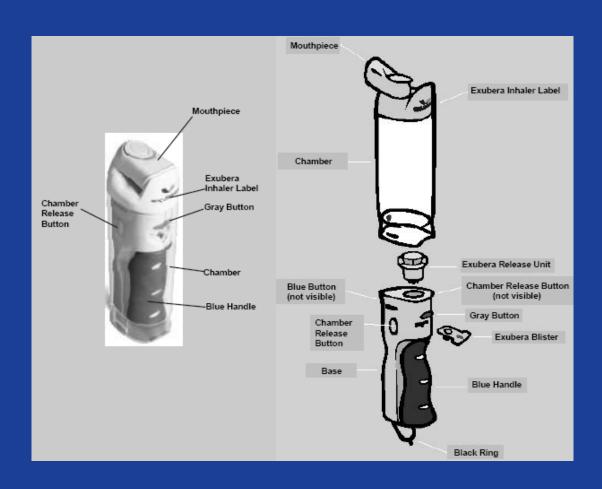

Adsorption on nanocarriers

Activity of soy bean peroxidase exposed to 95° C.


(O) enzyme in solution

enzyme adsorbed on nanocarriers:

- () fullerenes;
- (□) carbon nanotubes;
- (▲) graphite flakes;


VEGF-polyelectrolyte nanoparticles

Bioactive VEGF in medium from human umbilical vascular endothelial cells (HUVEC) after incubation of

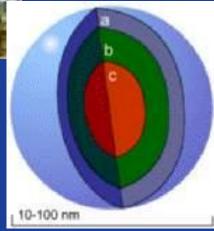
- (●)VEGF solution, or VEGF-polyelectrolyte nanoparticles:
- (O) dextran sulfate-chitosan;
- (Δ) dextran sulfate -polyethyleneimine;
- (□) dextran polyethyleneimine

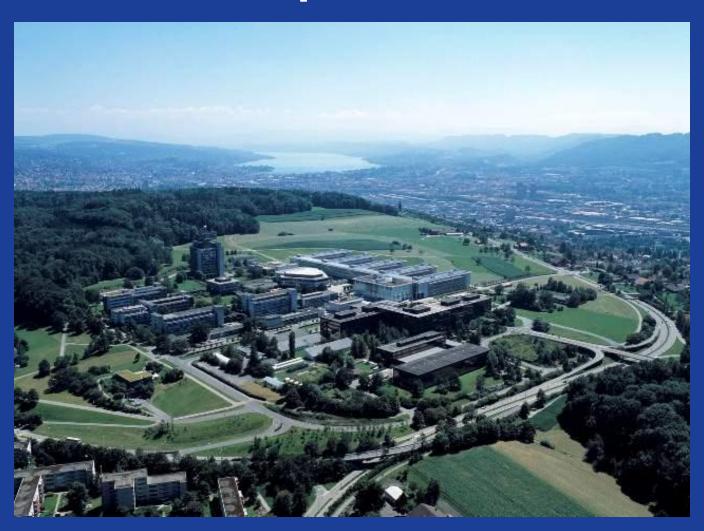
Nasal spray of insulin (Exubera®)

Components
Insulin, 1 mg
Mannitol
Glycin
Na-citrat
NaOH

Pulmonal inhalation pulmozyme (rhDNAse; dornase- α)

- Inhalation solution (2.5 mg protein +CaCl₂ +NaCl; not buffered!; 2.5 ml WFI)
- Incompatibilities: other drugs or excipients
- Storage: 2–8° C; at 30° C for max. 24 h)




Have we met the learning objectives?

ETH Zurich – a world full of proteins and more!

