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Estimation methods

Bayesian estimation

Population models

Inter and intra individual variability



Population Pharmacokinetics

> Description of pharmacokinetic behaviour of a
drug in a population

> Pharmacokinetic model

> Statistical model
* parameter distribution
 residual error



Goal

> Characterization of PK

> Influence of patient characteristics on PK

> MAP Bayesian parameter estimation

 for dose adjustment in individual patient (TDM)



Model parameters

> Model parameters
* Measure of central tendency (‘mean value’)
* Measure of inter-individual variability (‘sd’)

» Covariance between parameters (often
ignored!)

* Assessment of covariates



Covariates

> Descriptors related to a pharmacokinetic
parameter, e.g.
* creatinine clearance for renal clearance
* BSA for (metabolic) clearance
» LBMc for volume of distribution
° age
* gender
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Parameter distribution

> Parametric methods require assumptions,
e.g.

* normal distribution
* log-normal distribution

> Nonparametric methods



Residual Error

> Analytical error

» accounted for by appropriate weighting

> Errors in dosing and time

> Model misspecification



Residual Error

> Assumptions on residual error required for
appropriate weighting of measurements,

e.g.

* independent of concentration
* proportional to concentration
* log-normal distribution (use logarithmic transformation)

 assay error related to concentration by a polynomial
SD(C) =s0 + s1-C +s2-C* +s3-C°



Residual Error

> Fixed residual error (related to
concentration)

> Residual error parameters estimated during
the population analysis



Data (measurements)

> Rich data

> Sparse data
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Rich data

Large number of blood samples from each
subject

Small number of subjects
Experimental environment
Healthy volunteers

Aim: model identification



Sparse data
Small number of blood samples from each
patient
Large number of subjects
Clinical environment
Patients

Aim: Identification of model parameters and
covariates for TDM
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Methods
Naive pooling
Standard Two-Stage (STS)
Mixed-Effect modeling (eg: NONMEM)
Nonparametric methods (eg: NPEM)
Iterative Two-Stage Bayesian (ITSB)



Naive Pooling

> Data of all patients pooled
> Inter-individual variability ignored

> No information on inter-individual variability
obtained



Standard Two-Stage
Step 1

Data of each patient analysed separately

Step 2

Mean and SD of model parameters



Standard Two-Stage

Conceptually and computationally simple

Inter-individual variability overestimated
Not applicable to sparse data
Problems with ‘non-fittable’ patients



Mixed-Effect Modeling
> NONMEM

« Statistically sophisticated
» Generally accepted (FDA)

e ‘Black box’



Nonparametric methods
> NPEM, NAG

* No assumptions on distribution of parameters within the
population required

» Detection of typical distribution patterns, e.g. bimodal
 Suited for ‘Multiple Model Approach’

» Conversion to parametric distribution required for
application in MAP Bayesian fitting

» Not well documented in public area



Iterative Two-Stage Bayesian

> KinPop (MwPharm)
> IT2B (USC*PACK)

» Conceptually and computationally simple

 Results may be less precise and/or less accurate for
sparse data



Iterative Two-Stage Bayesian

> Assume a reasonable set of population data
(e.g. from STS)
* means * sd
 covariance matrix (usually zero)
* residual error (e.g. assay error pattern)



Iterative Two-Stage Bayesian

> Step 1: Perform Bayesian analysis on each
subject separately

* Estimate PK parameters using Maximum A Posteriori Bayesian
feedback

» Pharmacokinetic population parameters
( a priori information)

* Observed plasma concentrations
(measurements, actual information)



Iterative Two-Stage Bayesian

> Step 1: Perform Bayesian analysis on each
subject separately

> Step 2: Calculate new set of population data
* means * sd
* covariance matrix

* residual error



Iterative Two-Stage Bayesian

> Repeat step 1 and step 2 until convergence
is reached, i.e.

stable values for:
°* means * sd
* covariance matrix

* residual error



Iterative Two-Stage Bayesian
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APPLIED PHARMACOKINETICS

e Estimation of the creatinin clearance
 variability in de lab results

* assay error pattern

* non-pharmacokinetic sources of variability
of the results:

— coorperation of the nursing staf, the pharmacy, the lab
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assay sd (mg/L)

APPLIED PHARMACOKINETICS

assay pattern
y = 0.568 - 0.171X + 0.022X2
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APPLIED PHARMACOKINETCS

 THERAPEUTIC / TOXIC RANGE



ng/ml

SERUM DIGOXIN LEVELS

Non-toxic

mean=1.8

Toxic

mean=3.1

= treatment
o = Prev. radioisotope work

FIG. 2. Serum digoxin concen-
trations in patients without (left)
and with (right) digoxin toxicity,
as found by Doherty (1), redrawn
with permission. Note the great
overlap between therapeutic and
toxic concentrations, and the fact
that approximately half the pa-
tients with serum levels of 3.0 ng/
mL or more tolerated that level
and were not toxic. Also note that
the incidence of toxicity is very
low for levels up to 1.0 ng/mL,
moderate (though significant) for
levels of 1.0 to 2.0, and still only
approximately 50% for levels of

3.0 ng/mL or greater.
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APPLIED PHARMACOKINETICS

 ADAPTIVE CONTROL

* Bayes theoreme
e Fisher Information Index

* Optimal sampling times






APPLIED PHARMACOKINETICS

 ADAPTIVE CONTROL

e dose-individual patient data (1-4 samples) -
PK-data - populationdata - standard dose -
plasmalevels - Bayesian parameter
estimation - relate expected (Bayesianse) to
the estimated parameters - indivualise the
dose



ADAPTIVE CONTROL




APPLIED PHARMACOKINETICS

* MAP Bayesian Fitting

* maximum aposteriori probability Bayesian
fitting procedure

— population parameter values + SD and
serumlevels and SD



THERAPEUTIC DRUG MONITORING EDUCATION
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QUANT BAYES' THEOREM:
1. DETERMINE ASSAY ERROR EXPLICITLY.

2. USE IN CURRENT BAYESIAN OBJ FUNCTION
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APPLIED PHARMACOKINETICS

Optimal sampling times

distributionvolume at the end of the infusion
eliminationrateconstant at 1.44 x T1/2

the trough level is the less reliable level



APPLIED PHARMACOKINETICS

 Optimal sampling strategy
* D - optimal sampling

— D-optimality is a design criterium that, if minimalised, finds the
sampletimes where the overall variance of the estimated
parametervalues are minimalised



APPLIED PHARMACOKINETICS

 Optimal sampling strategy

* in D - optimal design the determinant of the inverse Fisher
Informatie matrix is taken as criterium to be minimalised



APPLIED PHARMACOKINETICS

* FISHER INFORMATION INDEX



A Ronald Aylmer Fisher, de aartsvader van de statistiek, stelde
een grens tussen bruikbare en onbruikbare resultaten voor.



Serum concentration

Infusion rate
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Fig. 5. Optimal strategies for monitoring serum drug con-
centrations. A change in the volume of distribution (Vd)
causes the greatest change in the concentration (S) when the
latter is at its highest (the true peak). This is a D-optimal
time for a 1-compartment model with intermittent intraven-
ous therapy. Abbreviation: ke; = elimination rate constant.
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Fig. 6. Optimal strategies for monitoring serum drug con-
centrations. A change in the elimination rate constant (kej)
causes the greatest change in concentrations (S) 1.44 half-
lives after the end of an intermittent intravenous infusion.
This is also a D-optimal time for a 1-compartment model
when such therapy is used. Abbreviation: Vd = apparent vol-
ume of distribution.
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FiGURE 3.13. lllustrating the value of waiting to draw  time into the regimen. There is an optimal time to draw
the second level (29). Intramuscular gentamicin therapy  the level in each dose interval. With each succeeding
of 80 mg every 8 hr in a simulated patient with C,  dose interval, the information contained in the specimen
= 100. Vertical: the index of the amount of information  increases, up until a steady state is reached (after about
contained in a specimen drawn at that time. Horizontal:  the fourth dose interval).
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FiGURE 3.14. lllustrating the value of waiting to draw
the second level (29). Intramuscular gentamicin therapy
of 80 mg every 8 hr in a simulated patient with reduced
renal function (Cer = 40). Vertical: the index of the
amount of information contained in a specimen drawn
at that time. Horizontal: time into the regimen. Much
less information is contained in early samples from this
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patient compared to the patient with normal renal func-
tion in Figure 3.13, because his half-time is longer. Al-
most no additional information is obtained, for example,
by drawing the second level in the same dose interval
as that of the peak level, drawn at time t, at lower
left in both Figures 3.13 and 3.14.



